Minimize ARTES

ARTES (Advanced Research in Telecommunications Systems)

ARTES is ESA's (European Space Agency) long-running, large-scale program to support the development of advanced satcom products and services. The ARTES program facilitates research and development activities as well as providing a framework for partnerships within the industry with goal of contributing to the development of European and Canadian industries. It assists them in the development of advanced technologies and concepts that form the basis for competitive products and services.

Satellite communications is the economic engine of the space industry, accounting for two thirds of overall space industry revenue. Worldwide data traffic is estimated to grow 800% by 2019, making broadband and data communications services leading growth segments. ESA's Directorate of Telecommunications and Integrated Applications (TIA) keeps European and Canadian industry at the leading edge of this fiercely competitive global market by nurturing innovation. 1) 2) 3) 4)

Through ESA's support, industry can pursue research and development that would otherwise not be economically viable. Growing new space-enabled applications and services stimulates the wider economy, creating new business and jobs across almost every sector.

Services using space capabilities benefit society on a daily basis and on a global and local scale, such as monitoring natural resources and the environment, improving education in rural areas, assisting search and rescue, and providing remote healthcare.

ESA's ARTES program transforms R&D investment into successful commercial products and services by offering varying degrees of support to projects with different levels of operational and commercial maturity.

ARTES has three branches:

Business Applications develops everyday applications and services that use satcoms technology to improve existing solutions or fill the gap left by terrestrial ones.

• Support and development of new or next-generation satcom products and technologies up to their first flight opportunity is part of ARTES Core Competitiveness.

• ESA's PPPs (Public–Private Partnerships) with satellite operators and manufacturers, supports co-funding to share the risk that comes with investing in new technologies. This accelerates their introduction to the market, keeping Europe ahead in satcoms.

ESA's Telecommunications and Integrated Applications also works alongside other public entities such as the European Union, Eurocontrol and the European Defence Agency. It also collaborates on various levels with national space agencies across ESA's Member States.

Figure 1: Making space work for you (video credit: ESA)

ESA's ARTES program started in 1993. In November 2018, ESA is celebrating 25 years of telecom partnerships and services. Over the past decade, the ARTES program has produced an average return on investment (RoI) of 2.8. This means that every Euro ESA invests in a project generates 2.8 times that amount in revenue; a rate that is increasing annually. The nature of that initial investment has also evolved over the years. Most ARTES projects used to be co-funded fifty-fifty between ESA and the company; but in the past few years the rising RoI has started to attract private investors to the downstream sector. These now contribute an average of 25% of the total seed investment. Today, ESA's efforts are geared towards further improving RoI, by helping industry create new areas of business, so it can continue to innovate and thrive in an increasingly challenging and fast-moving market. 5)

These efforts are focused on several key domains.

• The first is R&D to improve thecore competitiveness of satcom technology and products. As important now as it was in the 1990s, ESA has supported hundreds of companies, representing every facet of satcom technology, in designing ever-better, more efficient components. The net effect is to give European and Canadian industry a solid foundation of cutting-edge technology.

• The second is downstream commercial applications. Space-based services are increasingly part of everyday life. From healthcare, to tourism, to sustainability, there is a burgeoning demand for space-enabled services, and ESA's Business Applications program helps fund their development. - Together, the satcom R&D and Business Applications programs have worked with more than 500 European companies over the past decade.

• The third domain addresses entirely new technologies and markets that can counteract the declining revenue from TV broadcasting.

A prime example is laser communication, an area in which Europe is already a technological frontrunner, and which ESA believes to be the basis for the next revolution in satcom.

Traditional satcom radio frequency (RF) bands are experiencing bottlenecks as we use more and more of this finite resource; and optical links overcome this by bringing unprecedented transmission rates, resilience and security to meet future commercial needs.

Sending information over lasers is also more secure. Optical links are extremely difficult to intercept, and spaceborne quantum cryptography can increase the reach of secure networks by sending encrypted photon data keys over much larger distances than can be done with optical fiber.

This is important because secure communications in general are themselves a massive and fast growing global market that is very important to governments and private users, for example in maritime surveillance, disaster response and infrastructure monitoring.

In fact, the market is projected to grow from US $4.6 Bn in 2020 to US $6.5 Bn dollars by 2025 and civil use of governmental satcom is expected to more than double, reaching 70% of future demand by 2040.

Arguably the biggest opportunity of all is satellite for 5G. The future communications system referred to as 5G represents far more than just the next generation of terrestrial mobile services. It will drive a convergence of fixed and mobile services, introduce a new set of technologies and standards, create a network of networks and facilitate communications between everyone and everything, whilst focusing on some key vertical markets.

The next generation of data services, 5G, can offer more capacity, security and lower latency than any previous generation: and satellites can help spread 5G's always-on, ultra-fast connectivity across the globe, supplementing terrestrial networks.

This huge future market includes sectors like transport and logistics, safety and security, and media and broadcasting, all of which need the reach, reliability and security of space to fully realize the potential of 5G.

ARTES is working with the satcom community to develop the most competitive products and services in all of these areas, helping to turn the present challenges into an opportunity to diversify and build a future in which space services are a constant, unquestioned part of our daily lives.

Figure 2: Satellite for 5G: The next generation of communication services – 5G – will rely on a harmonious integration of networks, driving a convergence of fixed and mobile services, including satcom services. 5G will deliver ultra-fast speeds, connect all people and devices to the internet and minimize delays. It will affect everybody, changing the way we communicate, work and interact with technology (video credit: ESA)

ARTES 25 year series links:

ESA's 25 years of telecom: marking a milestone

ESA's 25 years of telecom: today's challenges and opportunities

ESA's 25 years of telecom: interview with Nick Appleyard

ESA's 25 years of telecom: interview with Stéphane Lascar

ESA's 25 years of telecom: looking to the horizon



The future of ESA's ARTES umbrella program

As 2018 draws to a close, we cannot yet say that space is truly integrated into everything we do – not in the transformational way that it could be. Currently over half the world's population remain unconnected by terrestrial means. Yet although satellites are the obvious solution, the relative ‘newness' of high-speed, low cost, global satellite services has meant that they have not yet become ubiquitous. 6)

ESA will continue to help Europe's satcom sector to evolve its services into an accessible, affordable and integrated utility, precisely because satellites' capacity, security and reach offer an enormous potential that has yet to be fully realized.

In the future digitalized world, satellite services will be an invisible but essential enabler, extending and enhancing 5G terrestrial networks, and where needed even taking over entirely, with no noticeable difference to the end-user in terms of speed, cost or latency. This will affect everyone, in ways as fundamental as improving the food we eat and the efficiency of our logistics and transport, or as complex as providing the resilience that a future, all-connected world will need to secure those connections through optical and quantum technologies.

For example, satellite data applied to agriculture can increase yields by identifying when certain crops should be harvested according to satellite observations, trigger automated pest control by vector mapping, and even optimize irrigation based on weather data and crop monitoring.

In terms of transporting those products, more than 90% of international trade is done by sea, and some of the busiest routes are now through the treacherous Arctic. With satellites providing realtime data on ice floes, anti-collision vessel tracking information, weather forecasting, and even enabling fully autonomous shipping, the maritime sector will be transporting ever more goods safely and efficiently.

Aviation will be assisted in a similar manner. Europe's congested airspace is expected to reach a crisis point soon, as the number of aircraft in our skies is projected to double by 2035. This will be compounded by the additional demand from airborne logistics drones as they enter mainstream service.


Figure 3: Iris will provide a safe and secure text-based data link between pilots and air traffic control (ATC) networks using satellite technology.. The Iris program is a PPP between ESA and Inmarsat, and will help relieve pressure on the aviation sector's congested radio frequency communication channels. It will so as part of the European Commission's SESAR (Single European Sky ATM Research) masterplan to modernize Europe's air traffic management. (image credit: ESA)

Legend to Figure 3: The Iris program is a European initiative (ESA, EC, Eurocontrol, DLR, airport operators, air navigation providers and aerospace companies) to modernize the communication system for air traffic management within the EC project ANASTASIA (Airborne New Advanced Satellite Techniques and Technologies in A System Integrated Approach).

Satellites can help accommodate this growth safely and with less impact on the environment, as continual, satellite-enabled communication from air traffic control and precise aircraft tracking, even over oceanic airspace, optimizes routes and reduces delays and cancellations.

Space will also help to protect these networks we so depend on, safeguarding against the emerging quantum computing threat, which will leave our current systems vulnerable to hackers.

Optical links by satellites, encrypted against cyber attack, will help shield critical infrastructure from attacks, assist with disaster response and send massive amounts of data to any part of the planet, for any kind of application, instantly.


Figure 4: EDRS (European Data Relay System) is a public-private partnership between ESA and Airbus Defence and Space. It uses advanced laser technology to relay information collected by lower orbiting satellites to the Earth via geostationary nodes (image credit: ESA)

Legend to Figure 4: The initial two European Data Relay System space nodes comprise the first phase of a future satellite relay network that will be able to transmit information from any part of the world to another. The program evolution is called EDRS Global (formerly GlobeNet); an extension of the EDRS program. The first two geostationary nodes relay data from low-orbit satellites to Europe, Africa and the Atlantic. EDRS Global will expand EDRS to worldwide coverage by placing satellites over other continents and oceans such as Asia, the Pacific and the Atlantic.



Understanding ARTES

The TIA ( Telecommunications and Integrated Applications) program of ARTES enables European and Canadian industry to explore, through research and development (R&D) activities, innovative concepts to produce leading-edge satcom products and services. ARTES offers varying degrees of support to projects with different levels of operational and commercial maturity. The scope and plans for its pursuit are incorporated into the Telecommunications Long-Term Plan (TLTP), the blueprint for ESA's actions over a five-year time frame (Ref. 2).

Businesses located within ESA member states involved in the satcom industry - whether small or large, new or experienced - can submit proposals via the various elements of the ARTES program. Every ARTES element includes a funding framework and follows certain criteria that must be met by satcom companies wishing to participate.

At the JCB (Joint Board on Communication Satellite Program) meeting on 17 December, 2015, it was announced that many of the program elements were renamed. The current and previous names of the ARTES elements are:

Future Preparations (previously ARTES 1 Preparatory) is dedicated to strategic analysis, market analysis, technology and system feasibility studies and to the support of satellite communication standards.

Competitiveness & Growth (previously ARTES 3-4 Products and ARTES 5.2 Technology) is dedicated to the development, qualification, and demonstration of products. The word product in this case has a wide meaning; it can be a piece of equipment, either of the platform or payload of a satellite, it can also be a user terminal or a full telecom system integrating a network with its respective space segment. Telecommunication applications can also be undertaken under the terms of this element.

Advanced Technology (previously ARTES 5.1 Technology) is dedicated to long-term technological development, either based on ESA's initiative, or on the initiative of the satcom industry.


Figure 5: Evolution of ARTES 3-4 and 5 (image credit: ESA)

European Data Relay Satellite System (EDRS) (previously ARTES 7 EDRS) is dedicated to the development and implementation of an European Data Relay Satellite (EDRS) system. Data relay satellites are satellites placed in geostationary orbit to relay information to/from non-geostationary satellites, spacecraft, other vehicles and fixed Earth stations, which otherwise are not able to permanently transmit/receive data.

Large Platform Mission (LPM) (previously ARTES 8 Alphabus/Alphasat) is dedicated to the development and deployment of Alphasat, the first unit of the Alphabus Platform jointly developed by Astrium and Thales Alenia Space. Launched in July 2013, Alphasat is operated by Inmarsat. It incorporates innovative on-board processing technology and promotes development of novel user services.

Satellite Communication for Air Traffic Management (Iris) (previously ARTES 10 Iris) is a satellite-based communication system that will be part of an air traffic management system currently being developed under the SESAR (Single European Sky Air Traffic Management Research) program of the EU, by Eurocontrol and the European Aeronautical community.

Small Geostationary Satellite (SGEO) (previously ARTES 11 Small GEO) is a telecommunications satellite platform capable of accommodating a wide range of commercial payloads and missions, from TV broadcasting to multimedia applications, Internet access and mobile or fixed services in a wide range of frequency bands. SmallGEO's new, modular and flexible design will boost European industry's ability to play a significant role in commercial satcoms by easing entry into the lower mass class telecom satellite market.

Next Generation Platform (NEOSAT) (previously ARTES 14 Neosat) is a specific element dedicated to developing the "Next Generation Platform", in partnership with industry. The program is specifically aimed at developing, and demonstrating in orbit, new satellite platform product lines for 3 to 6 tonne geostationary satellites.

Integrated Applications Promotion (previously ARTES 20 IAP) is dedicated to the development, implementation and pilot operations of Integrated Applications. These are applications of space systems that combine different types of satellites, such as telecommunications, earth observation and navigation. Integrated Application projects offer solutions that range from secure transport systems to developing emergency/disaster management systems.

Satellite – Automatic Identification System (SAT-AIS) (previously ARTES 21 SAT-AIS) The Automatic Identification System (AIS) is a short range coastal tracking system currently used on ships. It was developed to provide identification and position information to vessel and shore stations. Space-based, or SAT-AIS will provide AIS data via satellite, allowing for the detection of seafaring vessels equipped with AIS tracking devices.

• ARTES 33 Partner is a new program element to provide the satcom industry with an efficient framework to bring innovative products and systems into the marketplace through industry-generated public–private partnerships.


Telecommunications & Integrated Applications

• March 7, 2019: Hundreds of space companies in Europe and Canada—ranging from small and medium-sized enterprises to international consortia—have boosted their business by partnering with ESA. 7)

- ESA's ARTES (Advanced Research in Telecommunications Systems) program provides co-funding, multi-disciplinary expertise, business knowledge and opportunities for a wide range of companies producing anything from intricate components to whole satellite systems.

- One project that has generated a domino effect of socio-economic growth is the Indigo public-private partnership with Intelsat, an international communications satellites services provider. The partnership gives technology companies the opportunity to collaborate with a prominent global operator.

- The consortium includes Newtec, a Belgium-based company that began by manufacturing ground equipment and which now is an industry leader in designing, developing and manufacturing satellite communications solutions. In part thanks to the Indigo partnership, the ground segment products and solutions of Newtec can be applied to a wide range of applications.

- For example, the three-way partnership has been working with the Columbian telecommunications company, Anditel, to bring broadband to rural communities in South America.

- Some 70 terminals were installed in 2018 as part of a pilot project and Anditel has now signed a multi-year contract for further installations across Columbia.

- The project will give thousands of people living in rural Columbia access to vital online services such as information about health, education and government, as well offering access to the global marketplace.

- The New Space movement—companies seeking to develop faster and cheaper access to space and spaceflight technologies—can also prosper from a partnership with ESA.

- A recent example is Hiber, a small Dutch company established in 2016 that can connect remote sensors to the internet cheaply to return information on, say, local temperatures, rainfall or location.

- Hiber uses modems powered by batteries with a ten-year lifetime to relay data to an orbital constellation of cubesats, each of which measures just 10cm across. The technology can be used to harness data from almost anything, including haulage trucks, power cables, pipelines, hazardous chemicals on transport and fishing trawlers on the ocean.

- "Forming a partnership with the European Space Agency has enabled us to attract a good quantity of private capital and to become the first commercial Dutch satellite operator. We are looking forward to powering diverse projects, from tracking cattle to tackling climate change and more effectively growing crops," says Laurens Groenendijk, co-founder of Hiber, which has its headquarters in Amsterdam.

- Hiber has already launched the first two satellites in its constellation; the remaining 46 are due to be launched over the next five years. The company estimates that the market for periodically connecting remote objects could grow by €3.5 billion over the coming years.

- The scope and flexibility of ESA's ARTES program is a large part of what makes it such a success. During 2018 alone, the program's Core Competitiveness activities included working on more than 350 existing contracts with industry, placing more than 125 new ones, and completing 100 projects with European and Canadian companies.

- Space has become an integrated part of our daily lives. From smartphones to agricultural monitoring, the socio-economic benefits of space activities are so diverse that they are not always so obvious to the general public. ESA focuses this week on what space is doing for the economy, in particular, highlighting the flourishing applications domain and business opportunities.

Figure 6: ESA's ARTES Core Competitiveness program helps European and Canadian industry to develop innovative satcom products, services, systems and partnerships. It provides support at any point of the technology development process; from initial idea to a fully-fledged product, system or service. The program provides the funding, multi-disciplinary expertise, business knowledge, opportunities for Small and Medium Enterprises, international consortia and contacts needed to turn the concept into reality (video credit: ESA)


1) "About ARTES," ESA, 3 October 2018, URL:

2) "Understanding ARTES," ESA, URL:


4) "ESA's 25 years of telecom: interview with Nick Appleyard," ESA, 4 December 2018, URL:

5) "ARTES 25 Years of Telecom: Today's challenges and opportunities," ESA, 30 November 2018, URL:

6) "ARTES 25 Years of Telecom: Looking to the horizon," ESA, 21 December 2018, URL:

7) "ESA helps firms large and small prosper in global satcom market," ESA, 7 March 2019, URL:


The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: "Observation of the Earth and Its Environment: Survey of Missions and Sensors" (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (