Minimize Sentinel-2 highlights from 2018 to 2017

Back to main article

Mission status and imagery in the period of 2018 to 2017

 

• December 21, 2018: The Copernicus Sentinel-2 mission takes us over the island of South Georgia. Linked with the South Sandwich Islands to form a British Overseas Territory, this southern Atlantic island is a haven for a vast array of wildlife. 1)

- As part of the South Georgia and the South Sandwich Islands – a British overseas territory – this island is the largest in the territory covering 3500 km2. South Georgia is 167 km long and 1.4 to 37 km wide (coordinates: 54.4°S 36.7°W). Its mountainous terrain has numerous high peaks over 2000 m with the highest, Mount Paget, standing over 2930 m.

- Around five million seals call the islands home, as well as 65 million birds of 30 different species. Migrating whales and various fish species populate the surrounding waters and there is a large penguin population.

- First discovered by Captain James Cook in 1775, there is no permanent human population on the island, due to its remote location and inhospitable environment. Nevertheless, a BAS (British Antarctic Survey) research station operates in the capital, King Edward Point, in the island's center. This is a center for applied fisheries research, while on Bird Island, lying off the north-west tip of South Georgia, scientists and support staff focus on research into bird and seal biology.

- As we can see clearly in the image, South Georgia is mostly covered in snow. Its polar climate gives it short and very cold summers, and long, freezing and overcast winters. The rugged landscapes of the island are often said to leave visitors in awe, with two mountain ranges dominating - the Allardyce towards the middle of the island and Salvesen in the south.

- In 2012 the UK Government designated South Georgia as one of the world's largest sustainable use Marine Protected Areas. Significant investment has also been made in fisheries management and scientific research, as well as targeted conservation efforts to help protect the albatross. South Georgia is home to the Wandering Albatross – the largest flying bird species in the world.

S2_2018-2017_Auto52

Figure 1: This image of Sentinel-2, which was captured on 22 February 2018, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

• December 7, 2018: The Copernicus Sentinel-2 mission takes us over the Chachani mountain in Peru. Standing at over 6000 m, Chachani is the tallest of the mountains near the Peruvian city of Arequipa. The outskirts of the city and part of the airport runway are just visible in the center bottom of the image. The city is home to around 900,000 people and is renowned for its dramatic cityscape, surrounded by three volcanoes. Chachani is shown in the center of the image of Figure 2. 2)

- Arequipa is also known as la Ciudad Blanca or the White City thanks to the prevalence of baroque buildings carved from white volcanic sillar stone in its center. The volcanoes, overlooking the city, naturally form an important part of the city's identity.

- Heavy shades of red, showing vegetated areas, dominate this false-color image. The varying tones represent different vegetation types, at different stages in the annual vegetation cycle. The near-infrared channel of Copernicus Sentinel-2 has been used to achieve this false-color effect. A number of crops are grown in this area, including maize, asparagus and hot peppers (rocotos), which feature in many local dishes, such as the region's signature dish of rocoto relleno.

- In the center-right of the image we can see a body of water called Aguada Blanca. This is part of a protected natural area, covering 360,000 hectares. Llamas and alpacas live here, as well as flamingos which have made the surrounding lagoons and wetlands of the Andean plains their home. Wool trade is a huge industry for the region, with artisan crafts also booming in recent years.

S2_2018-2017_Auto51

Figure 2: This image of the Peruvian mountain scene was captured on 14 July 2017 on Sentinel-2 near the city of Arequipa; it is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• November 16, 2018: The Copernicus Sentinel-2A satellite takes us over the island of Fogo, Cabo Verde. This small volcanic island, which can be seen in the right of the image, is about 25 km in diameter and home to around 35,000 people. The combined population of the nine inhabited islands that make up the Republic of Cabo Verde is estimated to be 550,000. These islands lie in the Atlantic Ocean, around 600 km off the west coast of Africa. 3)

S2_2018-2017_Auto50

Figure 3: The Sentinel-2 satellite captured this image of the Cape Verde island group on 22 January 2018, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA , CC BY-SA 3.0 IGO)

- The black area in the island's center is the crater of the Pico do Fogo – Fogo's highest point stands at 2800 m, and is also the highest peak in the entire Republic of Cabo Verde. It last erupted in November 2014 to February 2015, totalling 77 days of activity. In some places, up to 75% of the buildings were destroyed, mostly by lava.

- In the northeast of the island, vibrant green highlights a vegetated area, where coffee is grown. There is a long tradition of coffee growing here, although the semi-arid climate and reduced rainfall in recent years make this a challenge. Other crops grown on the island include peanuts, oranges, tobacco, and beans. More arid and rocky areas are shown in a mix of yellow and orange.

- In the bottom left of the image we can see the island of Brava, with three islets above: Rombos–Grande, Luís Carneiro, and Cima.

- Historically, the name "Cape Verde" has been used in English for the archipelago and, since independence in 1975, for the country. In 2013, the Cape Verdean government determined that the Portuguese designation Cabo Verde would henceforth be used for official purposes, such as at the United Nations, even in English contexts. Cape Verde is a member of the African Union.

• November 02, 2018: The Copernicus Sentinel-2B satellite takes us over Semarang, Indonesia. A port city on the north coast of Java, Semarang is the fifth-largest city in the country, covering some 374 km2 and home to just over 1.5 million people. 4)

- This true-color image of Figure 4 shows the heart of the bustling regional commercial center in the bottom-left, where a range of industries from fishing to glass manufacture and textiles operate. Exports of rubber, coffee, shrimp, tobacco, and cacao, among other products, pass through the city's harbor, which can also be seen in the bottom-left of the image.

- The Java Sea dominates the left part of the image. Flood management remains an ongoing challenge for the area, with the city being prone to tidal flooding.

- The island nation of Indonesia is particularly vulnerable to sea-level rise. Some parts of Semarang, such as the residential area of Candi Baru, shown in the bottom-left of the image, stand just above sea level.

- In the right of the image we can see mainly agricultural land, with rice fields stretching across the landscape. Land subsidence has been widely reported in the area, particularly in the northern part of Semarang, accelerated by population increases and urban development.

- The impacts of subsidence include the wider expansion of (coastal) flooding areas, cracking of buildings and infrastructure, and increased inland seawater intrusion.

S2_2018-2017_Auto4F

Figure 4: This image, which was captured on 9 May 2018, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

• October 26, 2018: The Copernicus Sentinel-2B satellite takes us over Kyoto, shown in the top right, and Osaka, seen in the bottom left of this image. This striking false-color image captures two of Japan's larger cities, which are home to 1.5 and 2.7 million people, respectively. Both are, of course, significantly smaller than the capital. Greater Tokyo has a population of around 38 million, making it the largest megacity in the world. 5)

- The landscape of the Kyoto Prefecture varies from mountains and bamboo groves to waterfalls and forests. Vegetation is shown in vibrant shades of blue here, with built-up areas represented in yellow-red tones. Longer wavelength bands have been used when processing the image to make it easier to differentiate land cover, penetrate haze, and identify bodies of water.

- While almost three-quarters of the country is mountainous, less than 10% is covered by bodies of water. Northeast of Kyoto, we can see Lake Biwa, located in the neighboring Shiga Prefecture. This is the largest freshwater lake in Japan, covering an area of 672 km2.

- The area is famous for being home to Narezushi, the precursor to modern-day sushi. The dish is thought to have originated in southeast Asia around the second century CE (Common Era). People began to prepare it in Japan between 8 and 10 CE. Funazushi, using nigorobuna fish, typical of the Lake area, is prepared by fermenting and preserving the fish with rice and salt in barrels for up to a year. The result is a strong-tasting dish, often compared to blue cheese and accompanied by sake.

Visitors from all over the world travel to Kyoto, which is widely regarded as the cultural capital of the country. They are drawn by sites such as the Fushimi Inari Shrine, a UNESCO world heritage site, where more than 10,000 Torii gates stand in dedication to the Shinto god of rice.

- The multicultural food scene of Osaka, meanwhile, attracts foodies, on the lookout for tasty street food and an insight into "kappo dining." Meaning ‘to cut and to cook', this less formal cuisine focuses on bringing the diner and the chef together, with diners often given the chance to chat with the person who is preparing their meal.

- Over 100 Member governments and 120 participating organizations will gather in Kyoto from 29 October – 2 November for the Group on Earth Observations (GEO) Week 2018. The week's events will focus on the use of Earth observation for the benefit of humankind through GEO's three priority areas: the Sendai Framework for Disaster Risk Reduction, the Paris Climate Agreement, and the UN Sustainable Development Goals.

S2_2018-2017_Auto4E

Figure 5: This image, which was captured by Sentinel-2 on 11 May 2018, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

• October 22, 2018: As part of a scientific collaboration with the Mexican Space Agency, AEM (Agencia Espacial Mexicana) and other Mexican scientific public entities, ESA has combined images from the Copernicus Sentinel-2 mission to produce a detailed view of the different types of vegetation growing across the entire country. 6)

S2_2018-2017_Auto4D

Figure 6: The high-resolution land-cover map combines images captured by Copernicus Sentinel-2 between 2016 and 2018. The original map, generated with 10 m resolution imagery, is available via the Climate Change Initiative's Land Cover 10 m viewer (image credit: ESA, the image contains modified Copernicus Sentinel data (2016–18) processed by ESA–CCI Land Cover Project/UC Louvain/Brockmann Consult)

- Sentinel-2 is a two-satellite constellation built for the EU's Copernicus environmental monitoring program. Each identical satellite carries a multispectral imager that can distinguish different types of vegetation and crops. It can also be used to determine numerous plant indices such as the amount of chlorophyll and water in leaves to monitor changes in plant health and growth.

- The mission has a myriad of uses, one of which is to provide information to map land cover so that changes in the way land is being used can be monitored.

- Thanks to this Copernicus mission and to ESA's Climate Change Initiative Land Cover project, Mexico's land cover has been mapped at a resolution of 10 m. Land-cover mapping breaks down the different types of material on Earth's surface, such as water bodies, different forms of agriculture, forests, grasslands and artificial surfaces. This information is important for understanding changes in land use, modelling climate change, conserving biodiversity and managing natural resources.

- This is a valuable source for scientific studies and practical applications alike. Daniela Jurado from Mexico's National Commission for the Knowledge and Use of Biodiversity said, "Having access to such a detailed map is not only useful for scientific research such as understanding fluxes associated with the carbon cycle, but also for managing our natural resources and for conserving biodiversity. - It is also important for land-use management and for monitoring urban expansion."

- Alejandra Aurelia López Caloca, from the Center for Research in Geospatial Information Sciences added, "Indeed, this new map reveals a lot about our country. It is very helpful for studying the growth of cities and how rural areas are transitioned into urban environments. In addition, it is going to be a real help to understand where bodies of water are highly dependent on precipitation and to pinpoint those areas that are at risk of flooding. The new map allows us to identify the status land cover, specifically the agricultural kind so this will really help us understand how our land is being farmed."

- ESA has been coordinating global land cover maps since 2002 through its GlobCover and Climate Change Initiative Land Cover projects at a resolution of 300 m. But with the Copernicus Sentinel-2 pair now in orbit, land cover can be mapped at a resolution of 10 m.

- In the same vein, a land-cover map of Central America is also now available (Figure 7).

S2_2018-2017_Auto4C

Figure 7: Central America land cover. ESA has combined images from the Copernicus Sentinel-2 mission to produce a detailed view of the different types of vegetation growing across Central America. The high-resolution land-cover map combines images captured by Copernicus Sentinel-2 between 2016 and 2018. The original map, generated with 10 m resolution imagery, is available via the Climate Change Initiative's Land Cover 10 m viewer (image credit: ESA, the image contains modified Copernicus Sentinel data (2016–18) processed by ESA–CCI Land Cover Project/UC Louvain/Brockmann Consult)

• October 19, 2018: The Copernicus Sentinel-2A satellite takes us over Lake Disappointment in northwest Australia. Found in one of the most remote areas of the country, it is believed to have been discovered by an early explorer called Frank Hann in 1897. He was convinced that the series of creeks that he had been following in the east Pilbara area would lead to a freshwater lake and drinking water supply. Such was his disappointment to find a salt lake at the end of his journey, he gave the lake its memorable name. 7)

- Although the lake is dry most of the time, it is home to many species of water birds. When it is full, primarily during very wet periods, the lake retains water and allows no outflow and is hence classified as an endorheic basin.

- In this false-color image of Figure 8, the differences in the shades of blue in the lake reflect the depth of the water. The darker the blue, the deeper the water is. A higher concentration of salt might also explain the different colors of the water round the edges of the lake.

- It is likely that the red lines spread across the top part of the image represent some form of vegetation in this predominantly arid area on the edge of the Gibson Desert. Karlamilyi National Park, Western Australia's largest and most remote national park, can be found north of the lake. The park spans over 1.3 million hectares between the Great Sandy Desert and the Little Sandy Desert.

- Covering an area of almost 380,000 km2, the Shire of East Pilbara, also to the north of the lake, is the third largest municipality in the world. The population was registered as only around 11,000 in 2017, with mining constituting the backbone of the local economy.

- The Sentinel-2 mission for Europe's Copernicus program is tasked with monitoring our changing lands. Designed specifically to monitor vegetation, it can also detect differences in sparsely vegetated areas, as well as the mineral composition of soil.

S2_2018-2017_Auto4B

Figure 8: Lake Disappointment in northwest Australia. This image, which was captured on 1 April 2017, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• October 12, 2018: The Copernicus Sentinel-2B satellite takes us over South Sudan (Figure 9). Having gained independence from Sudan in July 2011, South Sudan is the youngest country in the world. It has an estimated population of 13 million people, more than 80% of whom live in rural areas. Most of the population relies on farming, fishing or herding to meet their food and income needs. 8)

- The Sobat river is traced in a vibrant green color along the left part of the image. This is the most southerly of the great eastern tributaries of the White Nile, the section of the Nile between Malakal, South Sudan and Khartoum, Sudan.

- Tropical forests, swamps and grassland make up the majority of South Sudan's terrain. A large, swampy area called the Sudd, which is about 320 km wide and 400 km long, can be found in the center of the country. This is thought to be one of the largest freshwater ecosystems in the world and is fed by the White Nile and rainfall runoff from surrounding areas. It is home to large fish populations, millions of migratory birds, and various endangered species.

- The area has also provided shelter for refugees fleeing the ongoing Sudanese civil war, which broke out in South Sudan in December 2013.

- The red and gold in the lower-central part of the image shows smoke from a fire. The smoke is being driven by a northerly wind. The black parts of the image, similarly, show burnt areas of land – possibly the result of slash and burn agriculture. By burning dry grass, herders are able to fertilize the soil with ash, promoting new growth that can be used to feed livestock. Subsistence farmers also tend to use this method to manage land, returning nutrients to the soil and clearing the ground of unwanted plants in the process. Some of the negative longer-term impacts of this practice include air pollution, deforestation and erosion.

- The Sentinel-2 satellites carry an innovative wide swath high-resolution MSI (Multispectral Imager) for observing the land and vegetation. The mission mainly provides information for agricultural and forestry practices and for helping manage food security.

S2_2018-2017_Auto4A

Figure 9: This image of South Sudan, which was captured on 18 January 2018 with MSI on Sentinel-2B, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

• October 5, 2018: A 7.5-magnitude earthquake and tsunami hit Indonesia on 28 September, destroying homes and hundreds of lives. As the death toll continues to rise, the effects of this natural disaster are far-reaching, with hundreds of thousands of people seeking access to food, water and shelter in the aftermath of this tragedy. 9)

Figure 10: Fault line land movement in Indonesia. This animation, derived from Copernicus Sentinel-2 data, shows land movement along the fault line at Palu, Indonesia. The earthquake and subsequent tsunami have destroyed homes and are thought to have claimed at least 1400 lives according to the most recent reports. It has been estimated that up to 1.5 million people will be affected by these events (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

- Satellite data can be used to support international disaster risk management efforts, such as those in Indonesia. One of the ways in which ESA is contributing to this area is through leading a range of activities in the framework of the Committee on Earth Observation Satellites (CEOS) Working Group on Disasters.

- In particular, the Geohazards Office, led by the French Geological Survey (BRGM) liaises with practitioners on the exploitation of Earth observation processing services to support hazard mapping and risk assessment. This is in the spirit of the International Forum on Satellite Earth Observation and Geohazards.

- BRGM experts have generated displacement maps using Copernicus Sentinel-2 acquisitions from 17 September and 2 October.

S2_2018-2017_Auto49

Figure 11: Thematic experts from the Corinth Rift Laboratory in Greece have generated a displacement map using Copernicus Sentinel-2 acquisitions from 17 September and 2 October, showing the impact of the 7.5-magnitude earthquake that hit Indonesia on 28 September 2018. The use of the Cloud processing platform GEP demonstrates the ability to rapidly provide automated measurements (image credit: ESA, the map contains modified Copernicus Sentinel data (2018), processed by the Corinth Rift Laboratory)

- Thematic experts from the Corinth Rift Laboratory in Greece have generated similar results using the Cloud processing platform GEP, which has been designed to rapidly provide automated measurements.

- As shown in the images, the earthquake triggered deformations of several meters and a tsunami. Around 1400 people are reported to have lost their lives, hundreds have been hospitalized and many more thousands are thought to have been displaced. It has been estimated that up to 1.5 million people will be affected by these events.

S2_2018-2017_Auto48

Figure 12: Indonesia earthquake displacement data [image credit: ESA, the map contains modified Copernicus Sentinel data (2018), processed by the French Geological Survey (BRGM)]

• September 25, 2018: The drought that swept through Europe this year has hit European farmers hard. Sustained high temperatures and the lack of rain have badly affected the agrofood industry, including the important potato sector. - Europe has the highest level of potato consumption in the world at almost 90 kg per capita per year, and is the second largest potato producer globally with some 53 million tons harvested annually. 10)

- The price of potatoes varies from year to year, but this important crop has now reached the highest value seen in recent years on the commodity futures exchange. All of this, of course, means that the French fries, so well-loved in Europe, are about to get more expensive.

Figure 13: Drought in the Netherlands. This animation shows the differences in vegetation development detected by the Copernicus Sentinel-2 satellites in the Emmeloord region of the Netherlands between August 2017 and August 2018. The effects of the drought are clear here with a significant shift from lush greens in 2017 to brown shades the following year clearly visible. As well as providing detailed information about Earth's vegetation, Sentinel-2 is designed to play a key role in mapping differences in land cover to understand the landscape, map how it is used and monitor changes over time (image credit: ESA, the image contains modified Copernicus sentinel data (2018), processed by ESA/GeoVille)

- It is not all doom and gloom though. Earth observation data, including Copernicus Sentinel-1 and Sentinel-2 satellites as well as very high resolution data from other missions, can be used to help mitigate a number of challenges faced by the industry, from storage to disease monitoring, while increasing logistics and trading efficiencies.

Figure 14: The drought that swept through Europe this year has hit European farmers hard. Sustained high temperatures and the lack of rain have badly affected the agrofood industry, including the important potato sector. This animation shows early season crop type classification in the Emmeloord region of the Netherlands in June 2018 based on Copernicus Sentinel-2 data. Green shows summer crops, red: potatoes, orange: vegetables and flowers, yellow: cereals, and blue: grass (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA/GeoVille)

- A new service will help reduce the effect of these problems using satellite data. The agrofood industry and farmers growing potatoes and other crops should soon save money, get better prices and help protect their crops from disease using satellite data collected that will be sent directly to them through ESA's novel EOPLUG-IN service.

- The service will help with storage, trading and disease monitoring. This will help growers conserve potatoes better and longer, assist trading decisions, and improve the detection of certain diseases to reduce losses.

- EOPLUG-IN, recently launched through ESA's new Earth observation innovation hub – the Φ-lab, will enable fast, easy access to continuous business intelligence data streams for industry via machine-based technologies.

- This system will provide the means to integrate satellite data and other information streams directly in existing industry workflows in a business-friendly format. This will inform the agrofood industry, for example, about the impact of ongoing droughts, crop failures and diseases, helping users to save money, get better prices, and as a result, also help make potatoes cheaper for European consumers.

S2_2018-2017_Auto47

Figure 15: EOPLUG-IN launch. Amanda Regan (center left), head of ESA's Φ-lab invest office, kicks off Earth Observation PLUG-IN with GeoVille's commercial director Andreas Walli (center right), project manager Eva Haas (right), and software engineer Philip Krauss (left), image credit: ESA

Legend to Figure 15: EO PLUG-IN, launched through ESA's new innovation hub – the Φ-lab, is funded by the InCubed scheme and will enable easy, fast access to continuous business intelligence data streams for industry via machine -based technologies. This system will provide the means to integrate Earth observation data and other information streams directly within existing industry workflows in a business-friendly format. This will inform the agrofood industry, for example, about the impact of ongoing droughts, crop failures and diseases, helping users to save money, get better prices, and as a result, also support European consumers.

- Janny Peltjes, the managing director of HLB BV, a member of the Dutch agrofood cluster, expects that "the novel satellite-based system will be able to spatially detect crop diseases, thereby providing means to efficiently target affected areas, saving pesticide application and safeguarding production".

- As the system is scalable, the services can be expanded to different topics and sectors. Agriculture is a low margin industry and increasing margins on the 53 million tons of potatoes produced in Europe each year will save millions for this €7 billion industry.

- The service is developed by GeoVille Information Systems and Data Processing GmbH, the Austrian Earth Observation Data Center, and Dutch partners from the agriculture and food industries including Hermess and HLB.

- EOPLUG-IN is the first ESA InCubed activity. It integrates Big Data, combining non-Earth observation and Earth observation data using artificial intelligence, adopting a value chain approach, including reputable companies, and trailing the service with the agrofood cluster as a baseline for global roll out.

• September 21, 2018: The Copernicus Sentinel-2A satellite takes us over the largest island of the Azores: São Miguel. Resting at the intersection of the Eurasian, African and North American tectonic plates, the Azores form a string of volcanic islands in the North Atlantic Ocean, some 1500 km west of mainland Portugal. The nine major islands are divided into three groups, with São Miguel falling into the eastern group. 11)

- The archipelago is an autonomous region of Portugal and home to just under 250,000 people. We can see the capital of the region, Ponta Delgada, in the bottom left of the image. The main transport hub of the Azores, João Paulo II de Ponta Delgada International Airport, is clearly visible in the same part of the image. Tourism is an important industry for the islands, with visitors flocking to enjoy the unspoilt beaches and breathtaking landscapes, from the geysers of São Miguel to the natural waterfalls of Flores.

S2_2018-2017_Auto46

Figure 16: This image, which was captured on 8 September 2016, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA, CC BY-SA 3.0 IGO)

- Known locally as the Green Island, São Miguel is the most populous of the islands and amidst the lush foliage, volcanic craters, and freshwater lakes, visitors are spoilt for choice when it comes to visual attractions.

- The largest freshwater lake in the Azores, Lagoa das Sete Cidades, can be seen in the top left of the image. It lies in a large volcanic crater and consists of two lakes: Lagoa Azul and Lagoa Verde. On the right of the image we can see Furnas Lake, in the Furnas Valley, famous for its volcanic cones. The volcanic landscape of the island has even influenced local cooking methods. Cozido das Furnas, a stew-type dish, is prepared by lowering a pot filled with meat and vegetables into the hot springs dotted around the valley, and leaving it to cook for around five hours.

- The Azores islands are rich in terms of flora and fauna, and are home to a large number of resident and migratory bird populations. Efforts are being made to restore and expand the laurel forests typical of the Macaronesian islands (an area covering the archipelagos of Madeira, Azores, Canary Islands and Cape Verde) as only around 2% of the native laurel forest remains on the islands.

- ESA, in collaboration with the French Space Agency, CNES, is organizing a symposium on 25 years of progress in radar altimetry, which will be held in Ponta Delgada from 24–29 September. With global sea-level rise a global concern, the symposium will focus on the advances made in our understanding of the open ocean, the cryosphere, and coastal and land processes. The annual meeting of the Ocean Surface Topography Science Team and the International DORIS Service Workshop will also be held in the same week.

• September 18, 2018: Thales Alenia Space, the joint company between Thales (67%) and Leonardo (33%), announced today that it has signed a contract with the European Space Agency (ESA) to provide operations, maintenance and upgrade services for the PDGS (Payload Data Ground Segment) supporting the Sentinel-2A and -2B Earth observation satellites. The service contract is worth 29 m€ for the period from May 2018 to December 2021. It is being carried out for the European Commission as part of the Copernicus program, in particular the ground segment subsystem of the CSC (Copernicus Space Component). 12)

- The two Sentinel-2 satellites with optical sensors continuously scan the Earth's surface. Together, they provide updates images of the entire land surface of our planet in five days, with a resolution of 10 to 60 meters. These images are mainly used to monitor vegetation, bodies of water, soil and coastal zones. They are also used to observe and/or help prevent natural disasters, including floods, volcanic eruptions, landslides, etc.

- Open to competitive bidding in Europe, the contract was won by Thales Alenia Space at the head of a consortium that comprises Telespazio, in charge of the integration and testing of new software versions, and its subsidiary Telespazio France, in charge of operations seven days a week, security and performance tools. Other partners are Thales Services (France), Advanced Computer Systems (part of the Exprivia Group) (Italy), Deimos Space (Spain) and C-S Systèmes d'information (France), all such companies forming with Thales Alenia Space as prime contractor to ESA the consortium having developed the PDGS.

- The PDGS contract, won in 2011, involves the reception of images (directly from S-2A and S-2B, or relayed by the EDRS satellite), and their processing, archiving and cataloging, plus distribution to users around the world. Since entering service in 2015, this system has supported the exchange of nearly 750 terabytes of data per year, or more than 250,000 images downloaded by users every month. These volumes will soon double with the commissioning of L2A image production (including atmospheric correction), making the Sentinel-2 PDGS the most highly used Earth observation data processing and exchange system in the world.

- This contract marks the latest major success for the Space Alliance, formed by Thales Alenia Space and Telespazio. The Space Alliance performs a primary role in Copernicus, serving as an essential partner in the development of the systems as well as in the various applications of the satellite program.

• August 27, 2018: Water is crucial to life on Earth. But today, its overexploitation and pollution present challenges for the environment, economies and global living standards. These issues are addressed by the United Nations' SDGs (Sustainable Development Goals) and the annual World Water Week, which runs from 26–31 August 2018 in Stockholm. 13)

S2_2018-2017_Auto45

Figure 17: ESA's SMOS mission was launched in 2009 to provide global observations of soil moisture and ocean salinity – two important variables in Earth's water cycle. While this novel Earth Explorer satellite continues to advance our understanding of the planet, it is also showing considerable potential for real-world applications to improve everyday life (image credit: ESA/Cesbio) 14)

- World Water Week provides an ideal opportunity for thousands of participants from academia, industry and government to exchange ideas on this year's theme of "water, ecosystems and human development". Organized by the Stockholm International Water Institute, the week-long forum promotes collaborative action to help solve the looming water crisis. The event takes place as Europe recovers from an exceptionally dry and hot summer, which caused a drought in northern countries such as Sweden and Denmark (Ref. 13).

S2_2018-2017_Auto44

Figure 18: With temperatures soaring and no rain to speak of, Europe is in the grip of a heatwave. As well as the havoc that wildfires have caused in countries such as the UK, Sweden and Greece, the current heat is scorching our land and vegetation. These two images from the Copernicus Sentinel-2 mission show agricultural fields around the town of Slagelse in Zealand, Denmark. The image from July 2017 shows lush green fields, but as the image from this July shows, the heat and lack of rain has taken its toll on the health of the vegetation. This year's summer weather means that the same comparison could be made for many other parts of Europe (image credit: ESA, the image contains modified Copernicus Sentinel data (2017–18), processed by ESA, CC BY-SA 3.0 IGO) 15)

- As a participant at the conference, the European Space Agency (ESA) is co-convening a session on the use of Big Data and Earth observation for the monitoring of SDG 6 (Clean water and sanitation). ESA recognizes the urgency of the water-related Sustainable Development Goals.

- Water scarcity affects more than 40 percent of the world's population, and one in four people is likely to live in a country suffering from chronic or recurring shortages of fresh water by 2050 due to climate change and other causes, according to the United Nations. The World Economic Forum's Global Risks Report 2018 cites water crises as posing one of the five biggest risks to society.

- "World Water Week is the ideal occasion to share information about an increasingly scarce resource while we continue working with our satellite data users to develop sustainable water-use practices through innovative projects," says Benjamin Koetz, a scientist who develops new applications for ESA's Earth Observation Program directorate.

- Satellites are an essential tool to map and monitor bodies of water from space. Optical and radar instruments can identify changes in area, and spectrometers measure water quality by applying algorithms to the color of water. ESA's Soil Moisture and Ocean Salinity (SMOS) mission also maps soil moisture as a means of providing an early-warning system for droughts and extreme weather events.

- Responding to the pressing need for water information in African countries, ESA's TIGER and Earth Observation for Sustainable Development (EO4SD) initiatives are supporting national and cross-border water authorities in using satellite data to manage water supplies.

- For TIGER, South Africa's Stellenbosch University applies machine-learning software to data from the Copernicus Sentinel-1 and Sentinel-2 missions to monitor water levels in the Theewaterskloof Dam, a major water source for the Western Cape region, which includes the city of Cape Town.

- ESA has released its first comprehensive database listing activities undertaken by the Agency and its service providers to make the Sustainable Development Goals a reality. Among these activities is the Grey Water Recycling System, operated at the Concordia base in Antarctica. Water previously used for washing or cooking is recycled in a multistep process involving ceramic honeycomb peppered with holes 700 times finer than a strand of human hair, followed by a pair of membranes that yield clean water. The project addresses four SDGs and is overseen by ESA's Human and Robotic Exploration (HRE) directorate. The same kind of technologies were applied in a university in Morocco to provide fresh water and energy to 1200 students, from groundwater rich in nitrates and fertilizer and with solar and wind energy.

S2_2018-2017_Auto43

Figure 19: A river delta usually leads to the open sea, but the delta formed by the Okavango River is different. After rising in Angola and flowing through Namibia, the river meanders into Botswana, where it branches out to create an inland delta – one of the world's most important wetlands. Wetlands, both coastal and inland, are important for people and the environment. Their many benefits include acting as natural safeguards against disasters, protecting communities most vulnerable to the devastating effects of floods, droughts and storm surges. They also provide a habitat for a multitude of animals and plants, and filter and store water. The Copernicus Sentinel-2A satellite captured this image of the Okavango Delta on 2 December 2016. It has been processed in false color to highlight variations in the water cover and differences in vegetation (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA, CC BY-SA 3.0 IGO) 16)

- Every year, 2 February marks World Wetlands Day. It commemorates the Convention on Wetlands also known as the Ramsar Convention, which was signed on 2 February 1971 to provide a framework for national and international cooperation for the conservation and use of wetlands and their resources. This year's theme is ‘Wetlands for Disaster Risk Reduction'.

- Well-managed wetlands provide resilience for communities against extreme weather and help to minimize the damage from these hazards. - Coastal wetlands such as mangroves protect against flooding and serve as buffers against saltwater intrusion and erosion. Inland wetlands such as floodplains, lakes and peatlands and deltas like Okavango can reduce the risk of drought.

- The Okavango Delta, a World Heritage site, includes permanent swamps that cover about 15,000 km2 during the dry season but can swell to around three times this size, providing a home for some of the world's most endangered species of large mammals. In sharp contrast, the surrounding Kalahari Desert is a lifeline for local communities and wildlife alike – and therefore it is extremely important that it is well managed.

- Through the GlobWetland Africa project, ESA and the African team of the Ramsar convention help to use satellite observations for the conservation, wise-use and effective management of wetlands in Africa. Through the project, African stakeholders are provided with methods and tools to fulfil their commitments to Ramsar.

• July 27, 2018: The Copernicus Sentinel-2 satellite takes us over Sharm El Sheikh, Egypt. Famous as a resort on the southern tip of the Sinai Peninsula, this coastal strip along the Red Sea is peppered with bars, restaurants and hotels. The ancient Greeks and Romans are thought to have taken their holidays in Egypt as long ago as the 4th century BC. 17) 18)

- This striking true-color image shows the Gulf of Aqaba at the top center, feeding into the Red Sea – home to some of the hottest and saltiest seawater in the world. The Red Sea is connected to the Mediterranean Sea via the Suez Canal, one of the world's busiest waterways.

- Usually an intense blue-green, as captured in this image, the Red Sea is known, on occasion, to turn reddish-brown owing to algal blooms, which change the color of the sea when they die off.

- The area offers many opportunities for diving. In the center of the image we can see a series of coral reefs, which host rich marine life. The variations in the color of the water surrounding the islands and in the right of the image represent the depth of water – the lighter areas show more shallow waters than the vast expanse of deep blue, which dominates the image.

- In the top-right of the image, we can see the western tip of mainland Saudi Arabia – the beautiful and uninhabited sandy cape of Ras Al-Sheikh Hameed. Here, the red color represents areas with higher levels of moisture in an arid, desert landscape, while the white color represents salt.

S2_2018-2017_Auto42

Figure 20: Sentinel-2 captured this image of Sharm El Sheikh,Egypt and the Gulf of Aqaba on 11 April 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA , CC BY-SA 3.0 IGO)

• July 20, 2018: The Copernicus Sentinel-2 satellite takes us over the city of Valencia and its stunning blue coast. Situated on the east coast of the Iberian Peninsula, Valencia is the third largest city in Spain after Madrid and Barcelona. 19)

- The city is visible in the center of the image, flanked by the Mediterranean Sea on one side and overlooked by the mountains of the Sierra Calderona to the north. As a significant cultural center for the country, it is home to the futuristic City of Arts and Sciences complex, which also hosts Oceanografic – the biggest aquarium in Europe.

- Just 10 km south of the city, this true-color image shows us the Albufera freshwater lagoon in green. Separated by a narrow strip of coastline featuring sand dunes and Mediterranean pine forest, three canals connect the lagoon and surrounding wetlands with the sea.

- The area is home to huge numbers of both migratory and resident birds, including rare species such as Eurasian Bittern. The area is also thought to be the home of the world-famous Paella dish, with the traditional rice used for the dish grown in the surrounding fields since the 19th century.

- On the right of the image, amidst the waves and popcorn clouds, we can see a boat, possibly travelling to the port of Valencia from one of the nearby Balearic Islands – a popular route for tourists and residents of the city alike.

- The region of Valencia is famous for the diversity of its landscapes, covering mountains, beaches, wetlands and semi-arid desert environments within a total area of less than 25,0000 km2. This diversity is clearly highlighted in the Sentinel-2 image.

S2_2018-2017_Auto41

Figure 21: This image was captured on 9 August 2017 with the Sentinel-2 satellite, it is also featured in the Earth from Space program (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA , CC BY-SA 3.0 IGO)

• July 17, 2018: A huge iceberg drifted perilously close to the west Greenland coast causing fears that if it breaks up, waves could swamp the village of Innaarsuit. 20)

S2_2018-2017_Auto40

Figure 22: This satellite image, captured by Sentinel-2A on 9 July 2018, shows a huge iceberg perilously close to the village of Innaarsuit on the west coast of Greenland. If the berg breaks apart, waves resulting from the falling ice could wash away parts of the village (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA)

- The 169 residents of Innaarsuit in West Greenland are relatively used to seeing large icebergs floating by, but weighing around 10 million tons, this is reported to be the largest in memory. With chunks of ice calving from the iceberg, a number of residents were evacuated amid fears of a bigger break up. The local power plant is also on the coast so waves could also potentially shut down the village's power supply. However, there are recent reports that strong winds from the south have started to push the berg to the north. The image also shows several other large icebergs in the vicinity.

• July 6, 2018: The Copernicus Sentinel-2A satellite takes us over the capital of Iceland, Reykjavik. As a volcanic island famous for its volcanoes, glaciers, lakes, lava and hot springs, Iceland attracts tourists all year round with its vast array of natural wonders. 21)

- The image of Figure 23, which was captured on 1 November 2017, is also featured on the Earth from Space video program.

- In the upper left part of the image, ‘kettle holes' are visible as small dark green dots scattered across the reddish brown area. Kettle holes are formed when blocks of ice break away from glaciers and then become buried in outwash. When these buried blocks of glacier ice melt away they leave behind holes, which become filled with water and turn into kettle hole lakes. They are often found in areas that were covered in ice during the last ice age, which ended around 12 000 years ago. Kettle holes are common in Michigan in the United States, as well as in parts of Germany, Austria and the UK.

S2_2018-2017_Auto3F

Figure 23: This true color image shows us the small city of Reykjavik, home to around 120 000 people, and seen in the lower central part of the image. The port town of Akranes, 20 km north of the capital, is also shown in grey in the center of the image. In between the two lies Mount Esja, standing just over 900 m tall, and providing a dramatic backdrop to the capital (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA , CC BY-SA 3.0 IGO)

• June 29, 2018: For Asteroid Day, the Copernicus Sentinel-2A satellite takes us over the Gosses Bluff crater in the Northern Territory of Australia. The crater is visible in the left center of the image and it is about 22 km in diameter (Figure 24). It was most likely formed 140 million years ago by the impact of a large comet or meteorite slamming into the surface of Earth. 22) 23)

S2_2018-2017_Auto3E

Figure 24: Sentinel-2A captured the image of a crater in Australia on 4 February 2016 (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA, CC BY-SA 3.0 IGO)

- This false-color image shows an extremely dry area with some vegetation visible in reddish colors along the rivers and lakes. The intense colors of the image represent the mineral composition of the land surface, which is clearly visible owing to the lack of vegetation. Azurite is one of the minerals mined here.

- A series of low hills and drainage structures can be seen in the lower part of the image, a result of erosion over the years. The West MacDonell Ranges can be seen in the upper section of the image and part of the Petermann Ranges are shown in the lower section.

- The crater is around 200 km west of Alice Springs, famous for being the gateway to the Red Center, Australia's interior desert region.

- Asteroid Day brings people from around the world together to learn about asteroids, the impact hazard they may pose, and what we can do to protect our planet, families, communities, and future generations from asteroid impacts. It takes place on 30 June each year, which is the anniversary of the largest asteroid impact in recent history, the 1908 Tunguska event in Siberia.

• 22.06.2018: The Copernicus Sentinel-2A satellite takes us over Lake Huron, the second largest of the five Great Lakes of North America. Bound on the north and east side by the Canadian province of Ontario and on the south and west side by the state of Michigan in the U.S., Lake Huron was the first of the Great Lakes to be seen by Europeans in 1615. 24) 25)

- This image shows signs of sediments and algae bloom along the coast, one of the consequences of intensive agricultural activity in a region that responds to the ongoing demand for produce.

- Lake Huron is around 330 km long from northwest to southeast. Covering an area of over 244,000 km2 and containing around 22,600 km3 of water, together the Great Lakes form the largest connected area of fresh, surface water on Earth. The only places that hold more fresh water are the polar ice caps and Lake Baikal in Siberia.

- Many islands lie in the northeastern part of the lake, with Heisterman Island, North Island and Middle Grounds Island, home to Wild Fowl Bay State Park, shown on the bottom left of the image.

S2_2018-2017_Auto3D

Figure 25: The image, which was captured on 1 December 2017, highlights the dominance of agricultural production in the region where conditions are ideal for cultivating corn, soybeans and hay. The colored blocks in the image show a grid-like structure for growing crops, typical of American agricultural practice (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• June 15, 2018: At 8485 m high, Makalu is the fifth highest mountain in the world. The iconic pyramid-shaped mountain can be seen just to the right of the center of the image (Figure 26). It is situated on the border between Nepal and China, about 19 km southeast of Mount Everest, which is in the top left of the image. 26) 27)

- Because of the mountain's knife-edge ridges and its remote position, which leaves it exposed to the elements, it is viewed by many as one of the world's most difficult mountains to climb.

- Nevertheless, Swedish explorer, mountaineer and climate campaigner, Carina Ahlqvist, led a climb this year to raise awareness of climate change and to support ESA's Climate Change Initiative. During the expedition, scientists collected measurements to help validate data from the Copernicus Sentinel-1 radar mission that are used to study natural hazards such as rock falls and landslides in mountainous regions. The team also surveyed the Barun glacier, which lies at the base of Makalu, to help understand its history and therefore the past climate in this region.

- Unfortunately, Carina was struck with snow blindness and had to be evacuated just 300 m from Makalu's summit. She is now safe and well and the data collected during the expedition are being used to further understand the dynamics of this remote region and how it is being affected by climate change.

S2_2018-2017_Auto3C

Figure 26: Mount Makalu in the Himalayas is pictured in this Copernicus Sentinel-2B image acquired on 9 December 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• June 8, 2018: Copernicus Sentinel-2 images from 23 May and 7 June 2018 show changes in lava flow from the Kilauea volcano on Hawaii's Big Island. It is estimated that around 600 homes have been destroyed in one of the volcano's most destructive eruptions in modern times. According to Hawaii County Mayor, Harry Kim, Kilauea has never destroyed so many homes in such a short time. It is one of five volcanoes on the Big Island and is one of the world's most active volcanoes. 28)

- While the Sentinel-2 mission mainly provides information for agricultural and forestry practices and to map changes in land cover, its images of disasters such as volcanic eruptions can be used to help assess damage.

Figure 27: The Sentinel-2 mission has imaged changes in lava flow from the Kilauea volcano in Hawaii (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

• May 22, 2018: Covering 3000 km2, the Zambezi Delta in Mozambique is one of the most diverse and productive river delta systems in the world. This unique wetland, which is protected under the Ramsar Convention on Wetlands, features a broad alluvial plain with vast mosaics of grassland, woods, deep swamps and extensive mangroves. Recognized as a global biodiversity conservation hotspot, this remarkable delta is home to a myriad of wildlife, from big mammals such as buffaloes, lions and elephants to water birds such as fish eagles and flamingos, to marine species such as dolphins and freshwater fish. As well as this rich biodiversity, this extraordinary delta not only provides a source of food for Mozambique, but also protects the coast from flooding. 29)

- While the Zambezi River Delta is an example of a healthy ecosystem, biological diversity is declining around the world. It is estimated that between 100 and 150 species disappear every day. The International Day for Biological Diversity is held every 22 May to increase understanding and awareness of biodiversity issues such as this. Ratified by 196 nations, the Convention on Biological Diversity is the international legal instrument for the conservation of biological diversity and the sustainable use of its components.

S2_2018-2017_Auto3B

Figure 28: Satellites observing Earth have an important role to play as images can be used to assess the health of important ecosystems and show how they may be changing. This image was captured by the Copernicus Sentinel-2A satellite on 28 September 2016 (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA, CC BY-SA 3.0 IGO)

• May 18, 2018: The Copernicus Sentinel-2 mission takes us over the Bay of Mont Saint-Michel in northern France. -Lying between Brittany to the west and Normandy to the east, this remarkable bay, which is listed as a UNESCO world heritage site, sees some of the biggest tides in continental Europe. There can be up to 15 m difference between low and high water. When spring tides peak, the sea recedes about 15 km from the coast and when it returns it does so very quickly, making it a dangerous place to be. Sentinel-2 captured this image when the tide was out so that the vast area of sand dunes is exposed cut by meandering channels of shallow water. Three rivers empty into the bay: the Couesnon, the Sée and the Sélune. 30)

- The famous rocky islet of Mont Saint-Michel, visible as a small dark spot in the south of the bay, is about 1 km from the mouth of the Couesnon. Home to a Benedictine monastery and village, Mont Saint-Michel is also a UNESCO world heritage site and a mecca for tourists.

- The bay, however, has been prone to silting up in the last couple of centuries. Actions by man, including farming and the building of a causeway to the island monastery, have added to this problem. A major campaign has ensured that Mont-Saint-Michel preserves its maritime character and remains an island. The main river into the bay, the Couesnon, for example, is being left to flow more freely so that sediments are washed out to sea.

S2_2018-2017_Auto3A

Figure 29: This Sentinel-2 image of the Bay of Mont Saint-Michel was captured on 21 June 2017, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• May 11, 2018: The Copernicus Sentinel-2B satellite takes us over Alaska's Columbia Glacier, one of the most rapidly changing glaciers in the world. Over the last three decades, this tidewater glacier has retreated more than 20 km and lost about half of its total thickness and volume. The changing climate is thought to have nudged it into retreat in the 1980s, resulting in its end – or terminus – breaking off. 31) 32)

S2_2018-2017_Auto39

Figure 30: Sentinel-2B captured this false color image on 5 August 2017. The glacier flows down the snow-covered slopes of the Chugach Mountains into the Prince William Sound in southeast Alaska (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

- The terminus had previously been supported by a moraine, which is an accumulation of sediment and rock that served as an underwater barrier, helping to keep the glacier stable and insulate it from seawater. With this barrier gone, glacial dynamics took over and it began to flow to the ocean faster, calving large icebergs into the Sound. As this satellite image shows, many icebergs can be seen in the Sound.

- This one glacier accounts for nearly half of the ice loss in the Chugach Mountains. However, researchers believe that the Columbia Glacier will stabilize again – probably in a few years – once its terminus retreats into shallower water and it regains traction, which should slow the rate of iceberg calving.

• May 04, 2018: Reminiscent of an artist's pallet, this is the Emi Koussi volcano in northern Chad, imaged by the Copernicus Sentinel-2B satellite. Emi Koussi lies at the southeast end of the Tibesti Mountains. At almost 3500 m, this pyroclastic shield volcano rises high above the surrounding sandstone plains. It is not only the highest mountain in Chad, but also the highest in the Sahara. Calderas, or depressions, can be seen nestling in the cap of the volcano. These are a result of magma erupting quickly and the surface collapsing into the partially emptied magma chamber. Emi Koussi is extinct and it is not known when it last erupted. 33)

- The lack of vegetation allows wind and water to carve long grooves in the rock. These grooves can be 30 m deep and several kilometers long. The Copernicus Sentinel-2 satellites carry innovative high-resolution multispectral cameras with 13 spectral bands. Processing the image here reveals differences in the minerals of the rock. For example, the green around the cone of the volcano is old lava, while sandstone in the surrounding area appear in reds and yellows.

S2_2018-2017_Auto38

Figure 31: This image of the Emi Koussi volcano, which was captured on 27 November 2017, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• April 20, 2018: Henderson Island lies in the South Pacific, about halfway between New Zealand and Chile. As one of the best examples of a coral atoll, Henderson Island is a UN World Heritage site and one of the world's biggest marine reserves. However, while this remote, uninhabited, tiny landmass may look idyllic and untouched by humans, it's one of the most plastic-polluted places on Earth (Figure 32). 34) 35)

- It is estimated that around 10 million tons of plastic ends up in the oceans every year. Carried by currents, it can form rubbish patches or eventually be washed up on shores far from where it entered the ocean. On Henderson, for example, items from as far afield as Russia, USA, Europe and South America have been found.

- Ocean plastic has serious consequences for wildlife and the environment. Marine animals not only get caught up in this plastic but also ingest it. Even when it has been broken down into microfragments by weathering and waves, it still endangers animals and also enters the food chain, with unknown long-term consequences for animal life and our own health.

- Celebrated every 22 April since 1970, Earth Day demonstrates support for environmental protection. This year, Earth Day is dedicated to providing information and inspiration needed to change our attitude towards plastic.

S2_2018-2017_Auto37

Figure 32: The Sentinel-2B satellite captured this image of Henderson Island on 22 March 2018 (image credit: ESA, this image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

• April 13, 2018: The Copernicus Sentinel-2A satellite takes us over southern India to the capital of Telangana: Hyderabad (Figure 33). Home to almost seven million people and covering about 650 km2, Hyderabad is one of the largest metropolitan areas in India. It lies on the banks of the Musi River, which can be seen running across the middle of the image. Although steeped in history, this rapidly growing metropolis has become a hub of commerce and an international center for information technology, earning it the nickname of Cyberabad. 36) 37)

- While several lakes can be seen in the image, they are gradually being lost. It has been said that the city once had 7000 lakes, but there are now only about 70 and they are being subjected to pollution as the city expands and develops. Even the city's most famous lake, the heart-shaped Hussain Sagar, is blighted with pollution from agricultural and industrial waste and municipal sewage.

- The two identical Copernicus Sentinel-2 satellites carry high-resolution cameras working in 13 spectral bands. Images from the mission can be used to monitor pollution in lakes, changes in vegetation and urban growth.

S2_2018-2017_Auto36

Figure 33: Captured on 14 May 2017, the image has been processed to highlight the different features in and around the city. The yellow and browns show the built-up center while the light greens in the surroundings show arid fields. The shades of darker green depict vegetation and areas covered by trees. Interestingly, the bright blue, which appears, for example, along the Musi River and near other water bodies, is also vegetation such as parkland and grass (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• March 30, 2018: Figure 34 is a Copernicus Sentinel-2B image of Egg Island in the Bahamas, appropriate for the Easter season. Covering just 2070 km2, Egg Island is officially an islet. This tiny uninhabited patch is at the northwest end of the long thin chain of islands that form the Eleuthera archipelago, about 70 km from Nassau. Its name perhaps originates from the seabird eggs collected here. 38) 39)

- The image, which Sentinel-2B captured on 2 February 2018, shows the sharp contrast between the beautiful shallow turquoise waters to the southwest and the deeper darker Atlantic waters to the northeast. Ripples of sand waves created by currents stand out in the shallow waters. These shallow waters are a natural nursery for sea turtles and other sea life. Any disturbance to this delicate ecosystem could spell disaster for wildlife. In fact, Egg Island was recently at risk of being developed as a cruise ship port, which would have meant dredging the seabed and destroying coral reefs. Fortunately, this plan didn't take hold because of the damage it would cause to the environment.

S2_2018-2017_Auto35

Figure 34: Sentinel-2B image of Egg Island, Bahamas, acquired on 2 February 2018 (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

• March 26, 2018: Sand and dust stirred up by desert storms in north Africa have caused snow in eastern Europe to turn orange, transforming mountainous regions into Mars-like landscapes. This Copernicus Sentinel-2A image of Libya (Figure 35) captured on 22 March shows Saharan dust being blown northwards across the Mediterranean Sea. Lifted into the atmosphere, the dust was carried by the wind and pulled back down to the surface in rain and snow. It reached as far afield as Greece, Romania, Bulgaria and Russia. While the orange-tinted snow baffled skiers, meteorologists say this phenomenon occurs about every five years. 40)

S2_2018-2017_Auto34

Figure 35: This Sentinel-2A image of Libya, captured on 22 March, shows Saharan sand and dust being blown northwards across the Mediterranean Sea. Lifted into the atmosphere, the dust was carried by the wind reaching as far afield as Greece, Romania, Bulgaria and Russia. While the orange-tinted snow baffled skiers, meteorologists say this phenomenon occurs about every five years (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

• March 23, 2018: The Dutch are now starting to see their famous spring flowers poke through the winter soil, but a few weeks ago it was a different story as a cold snap took grip. — This Copernicus Sentinel-2 image from 2 March 2018 shows Amsterdam and the IJmeer and Markemeer freshwater lakes covered by a thin layer of ice. As famous as the Netherlands is for flowers, it's arguably equally renowned for ice skating. While the cold snap caused havoc throughout much of Europe, the Dutch were busy dusting off their skates and eager to hit the ice. The ice on these big lakes was much too thin to skate on, but some canals in Amsterdam were closed to boats to give the ice a chance to thicken and skaters took what is now a relatively rare opportunity to enjoy a national pastime. 41) 42)

- A possible consequence of climate change, the Netherlands doesn't see the ice that it used to. The Royal Netherlands Meteorological Institute rates winters using an index: those scoring above 100 are considered cold. Between 1901 and 1980, there were seven winters above 200 – very cold. The last time the index exceeded the magical 100 mark was in 1997. In fact, this was also the last time the weather was cold enough for an ‘Elfstedentocht': a 200 km skating race between 11 towns in the north of the country. In 2014, for the first time since measurements began, the index fell to zero.

S2_2018-2017_Auto33

Figure 36: While people enjoyed the ice below, this Sentinel-2 image, acquired on 2 March 2018, allows us to view the beauty of this short-lived layer of ice from above (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

• Marking the International Day of Forests on March 21, 2018, this Copernicus Sentinel-2 image shows an area of Bolivia that was once covered by trees but has now been cleared for resettlement schemes and agriculture. 43)

- Bolivia's city of Santa Cruz can be seen at the mid-left of Figure 37. One of the fastest growing cities in the world, this important commercial center lies on the Pirai River in the tropical lowlands of eastern Bolivia. To the east of the city, and particularly east of the Guapay River, or the Río Grande, a huge patchwork of agricultural fields can be seen. Back in the 1960s this was an area of largely inaccessible thick Amazon forest. However, as an area of relatively flat lowland with abundant rainfall, it is suited to farming.

- As part of a drive to develop and improve the economy, there has been rapid deforestation since the 1980s to accommodate programs to resettle people from the Andean high plains and develop the area for agriculture, particularly for soybean production. This has resulted in the region being transformed from dense forest into a large mosaic of fields. As well as countless rectangular fields, radial features can be seen where individual farmers have worked outwards from a central hub of communal land.

S2_2018-2017_Auto32

Figure 37: This image was captured by the Copernicus Sentinel-2A satellite on 30 September 2017, and processed in false color (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• March 20, 2018: The traditional way of mapping Earth's geology and mineral resources is a costly and time-consuming undertaking. While satellites cannot entirely replace the expert in the field, they can certainly help – as a recent effort in Africa shows. Geological maps identify different types of rock, faults, groundwater and deposits. They are not only essential for building infrastructure and assessing risk, but also important for locating and mining natural resources. 44)

- ESA has recently supported a pan-African initiative to collect, interpret and disseminate satellite information on geology and mineral resources such as metallic ores.

- This ESA-funded effort has paved the way for the German geo-information company GAF (Munich) to help the African Mineral Geoscience Initiative. The aim of the initiative, which is led by the African Union Commission and supported by the World Bank Group, is to catalog Africa's geology and mineral resources.

S2_2018-2017_Auto31

Figure 38: Details of the geological mapping layers for the Western Sahara demonstration area. From top to bottom: Sentinel-2 natural color composite, Sentinel-2 principal components analysis, SRTM (Shuttle Radar Topography Mission)-based elevation and the resulting geological map at 1:50000 scale (image credit: GAF)

- This task is made somewhat easier thanks to freely available data from the Copernicus Sentinel-1 and Sentinel-2 missions, as well as information from other satellites such as NASA's Shuttle Radar Topography Mission and the US WorldView-3 mission of DigitalGlobe.

S2_2018-2017_Auto30

Figure 39: Geologic mapping: ESA has recently supported a pan-African initiative to collect, interpret and disseminate satellite information on geology and mineral resources. Through this ESA-funded activity, the German geo-information company GAF assisted AMGI (African Mineral Geoscience Initiative) with satellite-based information. The aim of AMGI is to catalogue Africa's geology and mineral resources. As this example of Namibia shows, data from the Copernicus Sentinel-1 and Sentinel-2 missions, as well as data from other satellites such as NASA's Shuttle Radar Topography Mission and the US WorldView-3 mission were used to map the area (image credit: GAF)

- The idea is to produce geological maps for various climatic zones and different types of geology, especially in areas where data are scarce, not sufficiently detailed or outdated.

- Initial results show that while arid and semi-arid areas can be mapped accurately, tropical areas are more of a challenge. This is because these regions are typically covered with vegetation, which optical sensors cannot see through to gain information on the ground beneath. In these regions, radar and ground elevation data have been used, so structural information such as river networks form the basis of the maps.

- Overall, however, the initiative has shown how large areas can be mapped consistently and efficiently, which is of particular interest for surveying regional geology and for mining minerals.

- Francisco Igualada, senior mining specialist at the World Bank said, "Earth observation is one of the major sources of information for new and improved geological mapping. The results of the project demonstrate that satellite imagery combined with existing geophysical data is a fast, effective and efficient way to support the production and interpretation of geological maps at all scales – from low-scale reconnaissance mapping to detailed surveys – all of which are relevant for mineral exploration."

- Moreover, these results are important because it is envisaged that an accurate and comprehensive geological catalog will attract future investments in Africa.

• March 15, 2018: The Copernicus Sentinel-2A satellite takes us over the Japanese capital of Tokyo. Tokyo lies on the eastern shore of the island of Honshu, the largest of Japan's four main islands. Greater Tokyo, which fans out further to the north and northwest than this image shows, is home to almost 38 million people, making it the largest megacity in the world. 45) 46)

- The grey tones of this urban conurbation dominate the image and are in sharp contrast to the dark greens of the rugged mountains that flank the city to the west. The city center lies mainly to the south of the Arakawa River, which empties into Tokyo Bay. The bay can be seen in the bottom right of the image (Figure ). While many boats are visible in the bay, so is the Aqua-line, which is a combination of a bridge and a tunnel that spans the bay. The Aqua-line can be seen on the east side of the bay as a bridge that then disappears underwater as a tunnel. It has an overall length of almost 23.7 km, almost 10 km of which is tunnel – the fourth longest underwater tunnel in the world. A building that provides ventilation, as well as serves a rest stop, appears as an island-like structure above the tunnel.

- Nowadays, more than half of the global population live in urban areas and, as more people flock to cities, expansion and development needs to be planned and monitored. The Copernicus Sentinel-2 mission offers essential information for urban planners and decision-makers around the world.

S2_2018-2017_Auto2F

Figure 40: This Sentinel-2A image of Tokyo was captured on 8 May 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• March 13, 2018: The EDRS–SpaceDataHighway has now begun regularly relaying Earth images from Sentinel-2A, which marks the last of four Copernicus satellites in orbit being brought under the EDRS service. After several months of rigorous testing, the system has added the last ‘color vision' Sentinel to the list of Sentinels it serves, bringing the satellite's vibrant images to Earth faster than ever and completing the full set of four. 47) 48)

- EDRS (European Data Relay System) will be a unique system of satellites permanently fixed over a network of ground stations, with the first – EDRS-A – already in space. These nodes lock on to low-orbiting satellites with lasers and collect their data as they travel thousands of kilometers below, scanning Earth. EDRS then immediately sends the data down to Europe from its higher position hovering in geostationary orbit at around 35 800 km, acting as a go-between. 49)

- This process allows the lower satellite to continuously downlink the information it is gathering, instead of having to store it until it travels over its own ground station. That way, it can send down more data, more quickly.

S2_2018-2017_Auto2E

Figure 41: The services offered by the SpaceDataHighway enable users to transfer their data (imagery, video, voice ...) from their Earth Observation satellites, UAVs, multimission aircraft by means of optical communication via EDRS-A and EDRS-C geostationary satellites to receiving ground stations located in Europe (image credit: Airbus)

S2_2018-2017_Auto2D

Figure 42: A false-color image showing part of the Ganges Delta in south Asia, captured by the Copernicus Sentinel-2B satellite and relayed by EDRS-A on 27 October 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• March 2, 2018: Although this image of Figure 43 might look more like the surface of Mars, it was actually captured by the Copernicus Sentinel-2 mission and shows southeast Namibia and the western edge of the Kalahari Desert. 50) 51)

S2_2018-2017_Auto2C

Figure 43: This image of the Kalahari Desert was captured by Sentinel-2 on 28 July 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

- Namibia is famous not only for its stunning desert landforms but also because these deserts offer clues to the history of tectonic plate movement in this part of Africa. The Namib Desert, which runs along Africa's southwestern coast, is said to be the oldest desert in the world. While this image was taken further east – over part of southeast Namibia – the striking orange–russet tones are also down to the semi-arid climate in this remote region.

- The Kalahari, which covers much of Botswana, parts of South Africa and part of southeast Namibia is not a true desert as it receives too much rain, but it is an area of ancient fossilized sand dunes. Some of these dunes, also known as sand sheets, can be seen running across the top-right corner of the image and appear surprisingly parallel and uniform. It is thought that these dunes formed between 2,500,000 and 12,000 years ago, and have been fixed ever since.

- To the east, the landscape also looks like an alien orange world and is dominated by ridges, escarpments and dry lake beds known as salt pans. Roads cutting sharply across the landscape are a reminder that this region is not entirely unpopulated.

• Today, 16 February 16 2018, upwards of 20% of the world's population will be celebrating the Chinese New Year, also known as the Spring Festival. According to the traditional Chinese calendar, which is based on the lunar cycle and the position of the Sun, the New Year changes each year, but always falls between 21 January and 20 February. There are 12 Chinese zodiac animals that represent years, and 2018 is the year of the dog. 52)

- Marking this special day, we take a look at a Sentinel-2 image of Beijing, the capital of China. It is one of the most populous cities in the world, with over 21 million people, but during the New Year, millions travel from the big cities back to their hometowns to spend the holiday with their families in what is considered the world's largest annual migration.

- Beijing lies in northeast China at the northern tip of the North China Plain. While the city lies on flat ground, it is surrounded by mountains to the north and west (not pictured). From space, the city appears to be divided up into many squares, which is a consequence of it being one of oldest planned cities in the world. Beijing's present urban form was established in the early Ming dynasty – between 1368 and 1644 – with planning stipulating that the city should be a square encompassing nine avenues running north–south and nine running east–west.

- While this Copernicus Sentinel-2 image (Figure 44) details much of the city, a number of famous landmarks can be picked out easily. For example, lying in the heart of Beijing, the Forbidden City, one of China's largest and best preserved heritage sites, and Tiananmen Square can be seen.

- Happy Chinese Year – or Xīn nián kuài lè – to all.

S2_2018-2017_Auto2B

Figure 44: This Sentinel-2 image of Beijing was acquired on 3 May 2016 (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA, CC BY-SA 3.0 IGO)

• February 2, 2018: This Copernicus Sentinel-2 image features Tunisia's capital Tunis, in North Africa, and highlights some of the country's important wetlands (Figure 45). 53) This image is featured on the Earth from Space video program. 54)

- Captured on 15 December 2017, the image shows part of the Mediterranean's Gulf of Tunis, which provides natural protection for this ancient city and busy port. The area has seen a series of settlements over the last 3000 years, but arguably the most famous is Carthage, which now forms a suburb to the northeast of the center of Tunis.

- While the image offers sharp contrast between the city's urban environment and surrounding hills and agricultural fields, it also depicts several bodies of water, which are protected under the Ramsar Convention on Wetlands.

- World Wetlands Day is celebrated every year on 2 February, and with this year's theme being Wetlands for a Sustainable Urban Future, this image of Tunis highlights how important these wetlands are to the city.

- There are seven Ramsar sites around Tunis, five of which are visible in the image. Lake Tunis can be seen close to the coast and features a causeway. It is a brackish lagoon surrounded by intertidal marshes. It offers good nesting grounds for several species of bird and wintering grounds for species such as the Greater Flamingo. Mammals include rodents and bats, and it is an important source of food, a spawning ground and a nursery for several fish species. The main human activity carried out is fishing, regulated according to its protected status.

- The shallow lake of Sebkhet Sejoumi is west of Lake Tunis and is one of the largest water reservoirs protecting the capital from floods. Unlike other sebkhets – or salt lakes – in the area, Sejoumi retains some water all year and is therefore particularly important for wildlife in the summer when other sebkhets dry up.

- The smaller protected lakes of Ghdir El Golla and Barrage Mornaguia can be seen further west on the outskirts of the city. To the north of the city, lies Sebkhet Ariana which loses much of its water in the summer.

- Through its GlobWetland Africa project, ESA works in partnership with the Ramsar Secretariat to use information from satellites to help conserve and manage vulnerable wetlands such as these.

S2_2018-2017_Auto2A

Figure 45: Sentinel-2 acquired this image of Tunis on 15 December 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• February 1, 2018: Dubbed a perfect volcano because of the symmetry of its cone, Mount Mayon on the island of Luzon in the Philippines is erupting again. With more than 30 eruptions recorded since 1616, it is one of the world's most active volcanoes. This image, which was captured by the Copernicus Sentinel-2 mission on 30 January, has been processed to show different facets of the eruption. The Sentinel-2 satellites each carry a high-resolution camera that images Earth in 13 spectral bands. Here we see the volcano in natural color and then in false color, which by highlighting vegetation in red shows the damage caused by lava. Then two shortwave infrared bands reveal the hot lava spilling from the cone.

Figure 46: This Sentinel-2 image of the Mayon volcano was acquired on 30 January, showing the different facets of the eruption (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

• January 25, 2018: The Yukon River rises in British Columbia in Canada and flows through Yukon Territory before entering Alaska and finally draining into the Bering Sea (total river length of 3,190 km). This image of Figure 47, recorded on 29 August 2017, shows how the river branches off into numerous channels that meander through the low-lying terrain on their way to the sea. The sandy color of these channels and of the coastal water illustrates how much sediment the river carries to the sea at this time of year. 55)

- It is estimated that 95% of all sediment transported during an average year occurs between May and September. During the other seven months, concentrations of sediment and other water-quality constituents are low. However, scientists also believe that sediment flow has increased over the last few decades because permafrost is thawing in the Yukon River Basin and ice breakup occurs earlier in the year owing to warmer air temperatures. This is important because elevated concentrations can adversely affect aquatic life by obstructing fish gills, covering fish spawning sites, and altering habitat of bottom-dwelling organisms. Metals and organic contaminants also tend to absorb onto fine-grained sediment.

- The Copernicus Sentinel-2 satellites each carry a high-resolution MSI (Multispectral Imager) camera that images Earth's surface in 13 spectral bands. While the mission is mostly used to track changes in the way land is being used and to monitor the health of our vegetation, it also provides information on the condition of coastal waters.

S2_2018-2017_Auto29

Figure 47: Sentinel-2 image of the Yukon River Delta and its coastal sediment acquired on 29 August 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• January 19, 2018: The Copernicus Sentinel-2A satellite takes us over part of northern Brazil's Marajó island in Pará state (Figure 48). 56)

- Sediments discharged by the nearby Amazon River mouth (not pictured) are visible in the waters of the Atlantic Ocean north of the island.

- The land area pictured is dominated by a savannah landscape, with mangrove forests and palm swamps along the coast. The area is known for its large plantations – called fazendas – with animal husbandry. Although not native to the island, domesticated water buffalo outnumber Marajó's human population.

- ‘Popcorn' clouds are visible in the upper part of the image, formed by convection and condensed water vapor released by plants and trees during the sunny day. On the left side of the image we can see Lake Arari, the size of which fluctuates greatly between the rainy and dry seasons.

- Sentinel-2 images Earth in 13 spectral channels. Scientists can select which wavelength combinations to process over a given area to help better understand targets on the ground.

S2_2018-2017_Auto28

Figure 48: The channel combination used to create this image, which was acquired on 20 July 2017, is particularly useful for identifying different vegetation types and helps us to distinguish it very clearly from inland water bodies: water appears dark blue, while vegetation appears in a variety of bright colors (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• January 12, 2018: The Copernicus Sentinel-2 mission has captured rare snowfall in northwest Algeria, on the edge of the Sahara desert (Figure 49). Part of the Sahara was covered with snow on 7 January 2018, despite the desert at times being one of the hottest places on Earth. The snow was reported to be up to 40 cm thick in some places. Although temperatures plummet during the night, snowfall is very unusual in the Sahara because the air is so dry. It is only the third time in nearly 40 years that this part of the desert has seen snow. 57)

- Most of the snow had melted by the end of the next day, but luckily the Sentinel-2A satellite happened to be in the right place at the right time to record this rare event from space. The image was acquired on 8 January.

- While snow is common in the High Atlas Mountains, the image shows that, unusually, snow fell on the lower Saharan Atlas Mountain Range. The image is dominated by the orange–brown dunes and mountains dusted with snow.

- The town of El Baydah can be seen towards the bottom left. To the east of El Baydah, a cultivated forest is visible as a red rectangle. The image, which has been processed to display vegetation in red, shows that there is very little flora in the region.

- The two Copernicus Sentinel-2 satellites each carry a high-resolution camera that images Earth's surface in 13 spectral bands. The mission is largely used to track changes in Earth's land and vegetation, so useful for monitoring desertification.

S2_2018-2017_Auto27

Figure 49: Sentinel-2 image of the snow-covered Sahara desert in northwest Algeria, acquired on 8 January, 2018 (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

 

Mission status and imagery in the period of 2017

• December 22, 2017: The Copernicus Sentinel-2 mission takes us over part of Lake Winnipeg in the Canadian province of Manitoba, with Reindeer Island visible in the lower-right part of the image of Figure 50. While our friends on the other side of the pond might be able to tell us why this place is called ‘Reindeer Island', we believe that this is a rest-stop for Santa Claus during his busy night before Christmas. 58)

- Smaller islands can be seen along the edges of the image, while the swirling shades of green in the waters is an algal bloom. Although algae grows naturally in the lake, high levels of phosphorus – found in fertilizers and common household products – seeping into the water have caused a steady surge of toxic cyanobacteria, or blue–green algae, posing a threat to ecology and human health.

- Sentinel-2's frequent revisits over the same area and high resolution allow changes in inland water bodies and the coastal environment to be closely monitored. With its 13 spectral channels, the mission's novel imager can capture water quality indicators such as the surface concentration of chlorophyll, detect harmful algal blooms and measure water clarity – giving a clear indication of the health and pollution levels.

- By providing measurements of water quality and detecting changes, Sentinel-2 supports the sustainable management of water resources, and can also indicate areas that are safe, or unsafe, for swimming.

S2_2018-2017_Auto26

Figure 50: This image of Sentinel-2 of Reindeer Island in Lake Winnipeg was captured on 6 October 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• December 8, 2017: Toulouse is positioned on the banks of the River Garonne, the city is France's fourth largest with a population of 500,000. It is nicknamed the Ville Rose – pink city – owing to the color of the terracotta bricks commonly used in the local architecture. Even from space, the pinkish tint from the terracotta roof tiles is evident as shown with the MSI (Multispectral Imager) on Sentinel-2 in Figure 51. 59)

- In the upper left we can see the runways of the Toulouse-Blagnac airport. The air route to the Paris Orly airport is one of the busiest in Europe.

- Fields blanketing the countryside dominate the image. In fact, France is the EU's leading agricultural power and is home to about a third of all agricultural land within the EU. While agriculture brings benefits for economy and food security, it puts the environment under pressure. Satellites can help to map and monitor land use, and the information they provide can be used to improve agricultural practices.

S2_2018-2017_Auto25

Figure 51: Sentinel-2A image of Toulouse in southern France and the surrounding agricultural landscape, acquired on 10 July 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• December 1, 2017: The Copernicus Sentinel-2A satellite takes us over northern Brazil on 22 August 2017, where the Amazon River meets the Atlantic Ocean (Figure 52). The sediment-laden water appears brown as it flows from the lower left to the open ocean in the upper right. ‘Popcorn' clouds are visible in parts of the image – a common occurrence during the Amazon's dry season, formed by condensed water vapor released by plants and trees during the sunny day. 60)

- The land varies in color from the deep green of dense vegetation to light brown. Taking a closer look to the upper-left section of the image, we can see large brown areas where the vegetation has already been cleared away. Geometric shapes indicate agricultural fields, and linear roads cut through the remaining dense vegetation.

- Rainforests worldwide are being destroyed at an alarming rate. This is of great concern because they play an important role in global climate, and are home to a wide variety of plants, animals and insects. More than a third of all species in the world live in the Amazon Rainforest.

- Unlike other forests, rainforests have difficulty of regrowing after they are destroyed and, owing to their composition, their soils are not suitable for long-term agricultural use.

- With their unique view from space, Earth observation satellites have been instrumental in highlighting the vulnerability of the rainforests by documenting the scale of deforestation.

S2_2018-2017_Auto24

Figure 52: Sentinel-2A image of the Amazon River emptying into the Atlantic Ocean and of northern Brazil, acquired on 22 August 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• November 17, 2017: From the Salar de Atacama salt flat in the east to the Cordillera Domeyko mountains in the west, Sentinel-2 takes us over part of the Atacama Desert in northern Chile. 61)

- The desert runs along part of South America's central west coast. It is considered one of the driest places on Earth. Being a ‘coastal desert', the cold, upwelling waters in the Pacific Ocean inhibit rain from reaching the land. Instead, the winds that blow from the ocean bring fog.

- Because of the Atacama plateau's high altitude, low cloud cover and lack of light pollution, it is one of the best places in the world to conduct astronomical observations and home to two major observatories.

- Some areas of the desert have been compared to the planet Mars, and have been used as a location for filming scenes set on the red planet. ESA has even tested a self-steering rover in the Atacama, which was selected for its similarities to martian conditions.

- In the lower right of Figure 53, the geometric shapes of large evaporation ponds dominate the Salar de Atacama – Chile's largest salt flat. At about 3,000 km2, it is the world's third largest salt flat as well as one of the largest active sources of lithium. From evaporation ponds like the ones pictured here, lithium bicarbonate is isolated from salt brine. Lithium is used in the manufacturing of batteries, and the increasing demand has significantly increased its value in recent years – especially for the production of electric-car batteries.

S2_2018-2017_Auto23

Figure 53: Sentinel-2A image of part of the Atacama Desert in northern Chile, captured on 29 April 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• November 10, 2017: The Copernicus Sentinel-2B satellite takes us to the Republic of Fiji in the South Pacific Ocean on 28 September 2017. Part of Fiji's largest island, Viti Levu, is pictured here, with coral reefs speckling the water (Figure 54). 62)

- Shaped by volcanic activity and earthquakes, the center of the island is dominated by forests and a mountain range. The highest peak, Mount Tomanivi, reaches over 1320 m and is located on the central-right side of the image. While the area east of the mountain range receives heavy rainfall, the west side pictured here is in the ‘rain shadow', meaning that the mountains block the rain clouds, leaving this area drier than the east.

- In addition to the human population of some 600 000, one of the largest insect species also resides on Viti Levu: the giant Fijian long-horned beetle. The island is the only known home to the beetle, which grows up to about 15 cm long – excluding antennae and legs.

- With more than 300 islands, the Fijian archipelago's low-lying coastal areas are at risk of sea-level rise – a devastating consequence of climate change. Satellites carry special instruments to measure sea-level rise – but not only. Different instruments can measure different climate variables, from greenhouse gases to melting glaciers, and offer a global view of the state of our planet.

- The Republic of Fiji holds the presidency for this year's COP 23 (Conference of the Parties) on climate, held this week and next at the UN Framework Convention on Climate Change headquarters in Bonn, Germany.

- In February 2016, Cyclone Winston struck Fiji, damaging tens of thousands of homes and buildings, leaving more than 130,000 in need of shelter. With the COP 23 Presidency, Fiji calls for everyone to come together to build partnerships for climate action between governments, civil society and the private sector – and to work together to improve the climate resilience of vulnerable nations and communities.

S2_2018-2017_Auto22

Figure 54: On 28 Sept. 2017, Sentinel-2 captured part of Fiji's largest island with coral reefs speckling the water (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• October 3, 2017: From the barren Sahara to lush jungles, the first high-resolution map classifying land cover types on the entire African continent has been released. The map was created using a year's worth of data from the Sentinel-2A satellite. At a resolution of 20 m per pixel, you can now explore African's diverse landscapes from grasslands to croplands, water bodies to deserts. 63)

- Land-cover mapping breaks down the different types of material on Earth's surface. This information is important for understanding changes in land use, modelling climate change extent and impacts, conserving biodiversity and managing natural resources.

- The map released this week comprises 180,000 Sentinel-2A images representing 90 TB captured between December 2015 and December 2016. Considering the size of the map – about six gigabytes – a web interface was developed to visualize the data.

- The map was developed under ESA's CCI (Climate Change Initiative) Land Cover project, and users are invited to provide their feedback on the new map through an online form.

- "The prototype high-resolution land cover map at 20m over Africa is an impressive demonstration of the Sentinel-2A data availability and of the present capabilities for the processing of such huge volumes of data," said Frédéric Achard from the Joint Research Centre. "The community dealing with land resources in Africa will surely look forward with great interest to this prototype and to its future development."

- ESA has been coordinating global land cover maps since 2002 through its GlobCover and CCI Land Cover projects at a resolution of 300 m. While the latest map of Africa is based on observations from one of the twin Sentinel-2 satellites, the launch of Sentinel-2B in March 2017 has put the possibility of a global map at 10 m within reach.

- The pair of Sentinel-2 satellites offer ‘color vision' for Europe's Copernicus program. They each carry a multispectral imager with 13 spectral bands that can be used for agricultural and forestry practices and for helping manage food security. Satellite images can be used to determine various plant indices such as leaf area chlorophyll and water content.

S2_2018-2017_Auto21

Figure 55: At 20 m resolution, this land cover classification map of Africa was created using 180,000 Copernicus Sentinel-2A images captured between December 2015 and December 2016 (image credit: ESA, the image contains modified Copernicus Sentinel data (2015-2016), processed by Land Cover CCI, ESA) 64)

• September 29, 2017: The Copernicus Sentinel-2A satellite takes us over the jagged islands along the west coast of Greenland in this false-color image captured on 8 August 2017. Covering more than 2,000,000 km2, Greenland is the world's largest island and home to the second largest ice sheet after Antarctica. But these ice sheets are sensitive to changes in our climate, and rising temperatures are causing them to melt faster. 65)

S2_2018-2017_Auto20

Figure 56: The jagged islands along the west coast of Greenland were captured in a Sentinel-2 false-color image on 8 August 2017. On the right side of this image, the Nordenskiold Glacier is just one of many glaciers draining Greenland's ice sheet (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

- Scientists use Earth-observing satellites to track the ice loss. Between 2011 and 2014, Greenland lost around 1000 billion tons of ice. This corresponds to a 0.75 mm contribution to global sea-level rise each year.

- Melting ice sheets caused by rising temperatures and the subsequent rising of sea levels is a devastating consequence of climate change, especially for low-lying coastal areas. In addition, the increased influx of freshwater into oceans affects the salinity, which in turn affects global ocean currents – a major player in the regulation of our climate.

- Vegetation appears red in this false-color image, as the land here is covered by grasses and low-lying plants. Swirls of light blue in the water are suspended fine sediment produced by the abrasion of glaciers rubbing against rock, called ‘glacier milk'.

• September 22, 2017: The Sentinel-2A satellite takes us over part of northwest England in this image of Figure 57 captured on 5 January 2017. 66)

- The dark area near the center of the image is the Forest of Bowland, appearing mostly brown because this image was captured during the winter when there were no leaves on the trees. The area also has barren fells and peat moorland. During the Second World War, parts of the Bowland fells were used for military exercises, and unexploded bombs have been found in the area.

- In the upper left we can see some of the intertidal mudflats of Morecambe Bay, with the city of Lancaster on the coast. The city of Preston is situated at lower left on the River Ribble, which flows into an estuary where it meets the Irish Sea.

- The area north of the Ribble Estuary is the Fylde coastal plain. This somewhat square peninsula was created by the deposition of sediment by the rivers and streams over a long time. Parts were once dug for peat, but today towns and agriculture blanket the plain. The far-west side (not pictured) is mostly urban.

- On the right side of the image are three aircraft contrails forming straight lines. Zooming in on one of these, we see that instead of a single white contrail line there are three colors. While this may look like colored smoke released from the aircraft, it is an artefact created when the Sentinel-2 data were processed.

S2_2018-2017_Auto1F

Figure 57: Captured by the MSI of Sentinel-2A, the image has been corrected to show targets on the ground, so the position of the satellite in relation to the ground is taken into consideration when processing these spectral bands. The aircraft on the other hand is high above ground, so the position of the satellite in relation to the plane and contrail is different – but the image is still being processed to focus on ground targets. This results in a ‘split' of the spectral bands as the satellite flies over and the angles change (image credit: the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• September 15, 2017: The province of Syracuse on the southeastern coast of the Italian island of Sicily is pictured in this image (Figure 58) from the Sentinel-2A satellite. The provincial capital – also called Syracuse – is visible in the lower-central part of the image. 67)

- Founded by Greeks in the 8th century BC, the city was described by Cicero as ‘the greatest Greek city and the most beautiful of all'. Today the ancient town is a UNESCO World Heritage Site with notable structures including the Temple of Athena, a Greek theatre, a Roman amphitheatre and more. With vestiges providing testimony to Sicily's troubled history, Syracuse demonstrates the development of Mediterranean civilization over three millennia.

- Farther north along the coast is the city of Augusta with ships speckling the water near its port. The port serves numerous oil refineries up and down the coast; the large, circular oil storage tanks are visible from space.

- Augusta is also a point of entry for migrants who made the dangerous journey by boat from Africa to Europe.

- Along the left side of the image we can see the foothills of the Hyblaean Mountains. This range was once a plateau, but has since been eroded. Deep-cut canyons appear like green veins where the vegetation has grown in.

S2_2018-2017_Auto1E

Figure 58: This image, captured by the Copernicus Sentinel-2A satellite on 14 June 2017, is showing the southeastern coast of the Italian island of Sicily (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• September 8, 2017: The Copernicus Sentinel-2A satellite takes us over the Petermann Glacier in northwest Greenland in this false-color image captured on 16 August 2017 (Figure 59). 68)

- Sentinel-2's imager can view a given area in different parts of the spectrum, and producing a false-color image help us to differentiate between targets similar in color, such as snow and clouds. In this image, clouds are white with a hint of green, while snow and ice appear blue. Bright green areas show vegetation, while black spots are shadows and water.

- Petermann is one of the largest glaciers connecting the Greenland ice sheet with the Arctic Ocean. Upon reaching the sea, a number of these large outlet glaciers extend into the water with a floating ‘ice tongue'. Icebergs occasionally break or ‘calve' off these tongues. In late July, Sentinel-2 caught a 5.5 km2 iceberg calving off the end of Petermann.

- Polar scientists are keeping a close watch on a new crack near the center of the tongue – an usual place for cracks to form – while older cracks continue to grow nearby.

- Petermann's ice flow has accelerated in recent years. Land-based glaciers in Greenland are a major contributor to global sea-level rise and as global temperatures warm, more ice is expected to melt into the oceans. Scientists estimate that if Petermann collapses completely the sea level would rise by about 30 cm.

S2_2018-2017_Auto1D

Figure 59: The imager of Sentinel-2 captured this false-color image of the Petermann Glacier on 16 August, 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• August 29, 2017: Endless sunshine, eternal summer - the Sentinel-2 cloudless layer combines over 80 trillion pixels collected during differing weather conditions between May 2016 and April 2017, and merges them into a sunny homogeneous mosaic, (almost) free from atmospheric impacts (Figure 60). The company EOX IT Services GmbH of Vienna, Austria is providing the service. Thanks go to the EU (European Commission) and ESA (European Space Agency) for the free, full, and open Sentinel-2 data. 69) 70)

- Almost 250 TB of Sentinel-2 data were crunched fully automated pixel by pixel using EOX homegrown software combined by Joachim Ungar and Stephan Meißl with further Open Source tools. Supported by the processing power of Amazon Web Services and catalog services by Sinergise, our small team was able to craft this cloudless map of the world in a fast and inexpensive manner.

- Extracting cloudless pixels out of the Sentinel-2 archive and rendering natural looking colors is just an example of many possible use cases. On request, we easily deploy additional algorithms for your preferred application leveraging the multispectral nature of the Sentinel-2 sensor on a regional or global scale.

S2_2018-2017_Auto1C

Figure 60: Automatically stitching together multiple images from Sentinel-2, the Austrian company EOX gives us an unobstructed view of Earth (image credit: EOX)

• August 23, 2017: Wildfires have broken out across southern Europe as a heatwave grips the region. This animation created using images from the Copernicus Sentinel-2 satellites show the live blaze and aftermath of wildfires that devastated an area about 35 km northeast of Athens, Greece, in mid-August. 71)

Figure 61: The images from 14 August show the blaze and billowing smoke, which extends far south pushed by strong winds (image credit: ESA, the images contain modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

- Vegetation appears red in the false-color images from 19 August, and burn scars covering an area of over 2900 hectares appear black.

- Satellites like Sentinel-2 allow these crisis situations to be carefully monitored and mapped, at both regional and global scales. Sentinel-2 imagery combined with data from Copernicus contributing missions are being used to produce maps of this recent fire through the Copernicus Emergency Management Service for damage assessment.

• July 14, 2017: The circular structure dominating this Sentinel-2 image is Pilanesberg, the result of geological activity over more than a billion years. Once a massive volcanic complex towering over 7000 m tall, millions of years of erosion have shaped the landscape to what it is today: concentric rings of hills rising from the surrounding plain, with a diameter of some 25 km. 72)

- A greater part of Pilanesberg is a protected Game Reserve and home to the ‘big five': lion, elephant, Cape buffalo, rhinoceros and leopard. Other animals include cheetahs, zebras, giraffes and over 360 species of birds. The Game Reserve is located in North West Province in South Africa, west of Pretoria.

- Within the circular structure we can see a few bodies of water, the largest being Mankwe near the center. Before this area was a reserve, farmers built that dam to create this lake, but today it attracts tourists looking to spot wildlife.

- The land outside Pilanesberg is speckled by infrastructure such as buildings, roads and even a football stadium (upper right).

- South Africa is the world's leading platinum producer, and a number of mines surround the park – such as the bright area at the top of the image, or square area at the bottom.

S2_2018-2017_Auto1B

Figure 62: Sentinel-2B image of the circular Pilanesberg ring structure,South Africa, acquired on 18 May 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• July 13, 2017: With Italy suffering high temperatures and drought, wildfires have broken out including blazes that are ravaging the slopes of Mount Vesuvius near Naples (Figure 63). This huge plume of smoke led some to believe that Vesuvius was erupting again. The last time it erupted was back in 1944, but is most famous for the 79 AD eruption that destroyed Pompeii. 73)

- The smoke from these fires poses the biggest threat and has forced several evacuations this week. The wooded slopes of Vesuvius form part of the Vesuvio National Park, which was set up in 1995 to protect the volcano and surroundings. Much of the woodland is now destroyed. - Vesuvius is the only active volcano on mainland Europe. The animation also shows another fire and smoke near Positano on the Amalfi coast.

- The Sentinel-2 mission is based on a constellation of two identical satellites: Sentinel-2A and Sentinel-2B. Each carries a high-resolution multispectral camera working in 13 wavelength bands for a new perspective on land and vegetation. The combination of high-resolution, novel spectral capabilities, a field of vision covering 290 km and frequent revisit times is providing unprecedented views of Earth. Information from this mission is helping to improve agricultural practices, monitor the world's forests, detect pollution in lakes and coastal waters, and contribute to disaster mapping.

Figure 63: Using images taken by the Copernicus Sentinel-2B satellite on 12 July 2017, the animation combines different sensor bands to highlight the numerous separate fires around this iconic volcano and the smoke billowing over the surrounding area (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• July 7, 2017: The image of Figure 64 shows part of Bolivia's Salar de Uyuni – the largest salt flat in the world. Occupying over 10,000 km2, the vast Salar de Uyuni lies at the southern end of the Altiplano, a high plain of inland drainage in the central Andes at an elevation of 3,656 m above sea level. Some 40,000 years ago, this area was part of a giant prehistoric lake that dried out, leaving behind the salt flat. 74)

- Salt from the pan has been traditionally harvested by the local Aymara people, who still predominate in the area. But the Uyuni is also one of the richest lithium deposits in the world, at an estimated 9 million tons.

- The geometric shapes in the upper left are large evaporation ponds of the national lithium plant, where lithium bicarbonate is isolated from salt brine. Lithium is used in the manufacturing of batteries, and the increasing demand has significantly increased its value in recent years – especially for the production of electric-car batteries.

- The surrounding terrain is rough in comparison to the vast salt flat. In the lower right we can see the 20 km-wide alluvial fan of the Rio Grande de Lípez delta.

- On the whole, the Salar de Uyuni is very flat, with a surface elevation variation of less than 1 m. This makes the area ideal for calibrating satellite radar altimeters – a kind of radar instrument that measures surface topography. ESA's CryoSat-2 and the Coperncius Sentinel-3 satellites carry radar altimeters.

S2_2018-2017_Auto1A

Figure 64: This image was captured by the Copernicus Sentinel-2B satellite on 17 May 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• July 4, 2017: The F-TEP (Forestry Thematic Exploitation Platform) has now entered the pre-operations phase, providing initial services for Forest Change, Land Cover, Biomass and Vegetation Indices as well as interactive toolboxes. Data is available from Sentinel-1, Sentinel-2 and Landsat. Two pilot projects will be executed for forest mapping with users in Mexico and Finland. 75)

• June 30, 2017: Sentinel-2A takes us to the Vanuatu archipelago in the South Pacific Ocean, roughly 1700 km east of Australia. The islands we see are Pentecost to the north and Ambrym to the south (Figure 65). 76)

- Looking closely at the coastline, the white of breaking waves is more evident on the east coasts of the islands than on the west coasts. This is a common observation on islands that lie in the zone of the trade winds blowing mainly from south-easterly directions in the southern hemisphere.

- Zooming in on the dark area on Ambrym, red-hot lava lakes can be seen through the clouds. This volcano has two active volcanic cones and we can see smoke drifting out over the ocean to the west. - The last time the Ambrym volcano erupted was in 1913, prompting the evacuation of nearby towns.

- Ambrym's 12 km-wide caldera was created around 50 AD by a large Plinian eruption – also called a ‘Vesuvian' eruption because of the similarity with the explosion of Italy's Mount Vesuvius that destroyed the towns of Pompeii and Herculaneum. These types of eruptions are marked by columns of gas and ash that extend high into the stratosphere. They also eject large amounts of pumice.

- The volcano's slopes appear black owing to the presence of basalt. As we move further away from the volcano the land becomes greener owing to the increased vegetation cover.

- Sentinel-2 is able to systematically map different classes of cover such as forest, crops, grassland, water surfaces and artificial cover like roads and buildings. This information can be used to manage natural resources, to check rates of deforestation, reforestation and areas affected by wildfires. It can also help governing bodies and commercial enterprises make informed decisions about how best to manage, protect and sustain our important forest resources.

S2_2018-2017_Auto19

Figure 65: This image of Sentinel-2A was acquired on 24 June 2016 (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA, CC BY-SA 3.0 IGO)

• June 12, 2017: With the Sentinel-2B satellite close to beginning its working life in orbit, this latest Copernicus satellite has linked up to Alphasat by laser, across almost 36,000 km of space, to deliver images of Earth just moments after they were captured. 77)

- The test, which was done as part of Sentinel-2B's commissioning, included capturing a strip of images from Europe to North Africa and downlinking the data in just six minutes. — This achievement is not only thanks to cutting-edge laser technology, but also the power of ESA's partnerships with space industries and the European Union.

- Following its launch on 7 March, Sentinel-2B is set to be commissioned on 15 June. It joins its twin, Sentinel-2A, which is already supplying a wealth of high-resolution images for the European Union's Copernicus environmental monitoring program.

- The Sentinel-2 mission not only provides information to improve agricultural practices and map changes in land cover, but it also helps to monitor the world's forests, detects pollution in lakes and coastal waters, and contributes to disaster mapping. Many of these applications rely on imaging the same area in quick succession.

S2_2018-2017_Auto18

Figure 66: This image of the Bay of Naples, Italy, captured by the Copernicus Sentinel-2B is one of the first set of images delivered via Alphasat, which is in geostationary orbit 36 000 km above Earth. The image is a result of the two satellites using their optical communication instruments to transfer data via laser for fast delivery. This is essential for applications such as helping respond to disasters (image credit: ESA, this image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• May 24, 2017: Scientists observed the bleaching of Australia's Great Barrier Reef early this year using satellite images (Figure 67). While capturing these events from space has been difficult in the past, Sentinel-2's frequent revisits and its resolution makes it possible. - The corals of the Great Barrier Reef have now suffered two bleaching events in successive years. Experts are very concerned about the capacity for reef survival under the increased frequency of these global warming-induced events. 78)

- Bleaching happens when algae living in the corals' tissues, which capture the Sun's energy and are essential to coral survival, are expelled owing to high water temperatures. -The whitening coral may die, with subsequent effects on the reef ecosystem, and thus fisheries, regional tourism and coastal protection.

- The bleached state of a coral can last up to six weeks. The corals might recover, or die and become covered by algae, in either case turning dark again, making them hard to distinguish from healthy coral in a satellite image. Such a pattern requires systematic and frequent monitoring to reliably identify a coral bleaching event from space.

- Studying Sentinel-2 images captured over the reef between January and April, scientists working under ESA's Sen2Coral project noticed areas that were likely to be coral appearing to turn bright white, then darken as time went on.

- The event was confirmed by two successive images captured in February, indicating the approximate duration of the bleaching being at least 10 days.

- "In general, interpreting changes is ambiguous. You can't just jump to the conclusion brightening is bleaching because the brightness of any spot on a reef varies from image to image for many reasons due to both the water and bottom changes," said John Hedley, scientific leader of Sen2Coral.

- Chris Roelfsema of the University of Queensland's Remote Sensing Research Center, and lead of the Great Barrier Reef Habitat Mapping Project, conducted field campaigns in the area, collecting thousands of geo-located photos of the corals in January and again in April. These were used to confirm the satellite observations. "Sadly, in the areas where bleaching can be seen, the abundant coral cover we observed in January was in April mostly overgrown with turf algae, with only some individual coral species surviving. The imagery and field data suggest this area has been hit badly," he said.

- Since monitoring of bleaching is typically conducted manually by airborne surveys or diving, many reefs of the world are not effectively monitored.

S2_2018-2017_Auto17

Figure 67: Images from the Copernicus Sentinel-2A satellite captured on 8 June 2016 and 23 February 2017 show coral turning bright white for Adelaide Reef, Central Great Barrier Reef (Sentinel-2 captures coral bleaching, the images modified Copernicus Sentinel data (2016–17), processed by J. Hedley; conceptual model by C. Roelfsema)

S2_2018-2017_Auto16

Figure 68: Sentinel-2 time series over corals: Sentinel-2 images for the Adelaide Reef and the Central Great Barrier Reef were analyzed for bottom reflectance – or brightness. An increase in reflectance in early 2017 suggests a coral bleaching event, confirmed by two consecutive observations. The apparent absence of a bleaching in April and May 2016 is consistent with survey data from this area during the 2016 GBR bleaching event (image credit: John Hedley)

S2_2018-2017_Auto15

Figure 69: Field campaign results: Geolocated underwater photos of corals before and after the coral reef bleaching event observed on Ellison Reef in the central Great Barrier Reef, by Sentinel-2 in February 2017. Arrows indicate the area of predominantly bleached coral (image credit: C. Roelfsema, University of Queensland) 79)

• May 24, 2017: ESA and BayWa AG (Germany) are joining forces in an effort to advance the use of satellite data in farming. The collaboration aims to optimize the use of satellite data in farming and to assess the benefit to farmers with the overall aim of improving farming practices, water resource efficiency and crop yield. 80)

- ESA will provide technical expertise about how to access and interpret data from satellites such as the fleet of Sentinels for Europe's Copernicus program. In particular, Sentinel-2 is providing images that can distinguish between different crop types and be used to monitor plant growth.

- BayWa's subsidiary FarmFacts, which specializes in digital services for farming, will provide feedback on the usefulness and validity of the data. "Through the collaboration with ESA we get access to state-of-the-art technology for FarmFacts," said Klaus Josef Lutz, BayWa Chief Executive Officer. "As an agri-trading group, we are glad that we are able to help farms of all sizes to benefit from this technology."

- Josef Aschbacher, Director of ESA's Earth Observation Programs, added, "The swift integration of data from the Copernicus Sentinel fleet into agronomic models is a prerequisite for forecasting crop yields and other food supply issues. "BayWa is an ideal partner for ESA to validate and improve our satellite-based models and products in this respect."

- The agreement also foresees BayWa's participation in next year's Copernicus Masters Prize competition through a dedicated farming/agriculture challenge to help raise awareness of satellite data in farming.

- Sentinel-2 is the first optical Earth observation mission of its kind to include three bands in the ‘red edge', which provide key information on the state of vegetation. In this image from 6 July 2015 acquired near Toulouse, France, the satellite's multispectral instrument was able to discriminate between two types of crops: sunflower (in orange) and maize (in yellow).

• May 19, 2017: The Sentinel-2A satellite takes us over western India to a seasonal salt marsh known as the Rann of Kutch. One of the largest salt deserts in the world, the area fills with water during the summer monsoon season. During the drier winter, the vast white desert is a popular tourist destination, particularly for the Rann Utsav festival centered around a luxury ‘tent city', visible in the central-right part of the image as a series of semi-circles. 81)

- Large salt evaporation ponds dominate this satellite image. One of the major projects in this area is the production of potassium sulphate, which is commonly used in fertilizer. - To give an indication of the size of these ponds, the width of the cluster on the left of Figure 70 is nearly 13 km across. The lines in the upper-central part of the image are ditches used to control the flow of the water for the ponds.

- Meanwhile, vegetation appears red as seen in the lower part of the image. This area is the Banni grasslands, known for its rich biodiversity. The grasslands area was formed from sediments deposited by rivers including the Indus River, before an earthquake in 1819 changed its course. Today, Banni's vegetation is sparse and highly dependent on rainfall, but reoccurring droughts are increasing pressure on the arid region. Other factors, including overgrazing and the invasion of a non-native thorny shrub, are also stressing the environment.

- The Rann("desert" in Hindi) of Kutch salt march is located in the Thar Desert in the Kutch District of Gujarat, India and the Sindh province of Pakistan. It is about 7,505 km2 in size.

S2_2018-2017_Auto14

Figure 70: False-color image of the Rann of Kutch salt desert in western India, acquired by Sentinel-2A on 16 December 2015. The shades of blue in the pools and surrounding land come from varying mineral content, as well as the different depths of the pools (image credit: the image contains modified Copernicus Sentinel data (2015), processed by ESA, CC BY-SA 3.0 IGO)

• May 12, 2017: The image of Figure 71 was captured by Sentinel-2A in Nov. 2016 and released on May 12, 2017 by ESA. It features the Uinta Basin (also spelled Uintah), a physiographic section of the larger Colorado Plateaus province. It is also a geologic structural basin in eastern Utah, east of the Wasatch Mountains and south of the Uinta Mountains. The Uinta Basin is fed by creeks and rivers flowing south from the Uinta Mountains. Many of the principal rivers (Strawberry River, Currant Creek, Rock Creek, Lake Fork River, and Uinta River) flow into the Duchesne River which feeds the Green River—a major tributary of the Colorado River. The Green River has a length of 1,170 km, beginning in Wyoming, it is flowing through the Colorado Plateau and through some of the most spectacular canyons in the United States. The Uinta Mountains form the northern border of the Uinta Basin. 82)

- Rivers cut through the landscape, along which we can see patches of agriculture appearing bright red in this false-color image – a stark contrast to the less-vegetated areas across the semi-arid region. Surrounded by fields in the upper left is the town of Vernal, with a population of about 9000, it is the largest community in the Utah part of the Uinta Basin. Areas like buildings and parking lots with no vegetation appear blue and white. The long, light-brown rectangle shows the location of the regional airport.

- The top-right section of the image shows part of the Dinosaur National Monument. The park boasts hundreds of dinosaur fossils as well as scenic canyons cut by winding rivers.

- The area in the center left is the Uinta Basin. Situated in the northern part of the Colorado Plateau, the basin is known for its oil and natural gas production. The local economy, once based on agriculture and mining, has diversified, and energy extraction and tourism are now major industries as well. The Basin has an elevation between 1500 -3000 m above sea level, corresponding to this depression is a broad east-west strip of higher plateau that rises sharply above the denuded country to the south. The Uinta Basin is also the location of the Uintah and Ouray Indian Reservation, home to the Ute Tribe of the Uinta and Ouray Agency (also known as the Northern Ute Tribe). The Ute Tribe is the source of Utah's state name.

- The large black and dark blue structures in Figure 71 are evaporation ponds – likely for wastewater from the oil and gas extraction activities. Wastewater ponds allow for the water to evaporate, which leaves behind concentrated residual waste, thus lowering the volume requiring treatment and reducing costs.

S2_2018-2017_Auto13

Figure 71: This high-resolution (10 m) image of the Uintah Basin (over the border of the US states Utah and Colorado) was acquired by Sentinel-2A on November 7, 2016 (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA, CC BY-SA 3.0 IGO)

• May 5, 2017: Divided among some 90 islands, Amsterdam of the Netherlands has more than 100 km of canals (Figure 72). The city lies about 2 m below sea level – in fact, around a third of the country lies below sea level, making it susceptible to floods. Rising sea waters during periods of bad weather – called storm surges – are kept under control by dams, dikes, floodgates and natural sand dunes. 83)

- While the North Sea can be seen on the left, the water on the right is part of the Markermeer lake. This area was once a saltwater bay called the Zuiderzee, but was closed off by a dam in the 1930s. The bay was drained in stages and land reclaimed, including Flevoland on the right side of the image – one of the world's largest artificial islands.

- Another relatively recent addition to the Dutch landscape is the neighborhood of IJburg comprising six artificial islands east of Amsterdam. The first residents moved in only 15 years ago.

- The meticulously planned landscape seen in most of the image breaks for the coastal dunes along the left. These areas are home to dozens of bird species, as well as deer, squirrels, rabbits and foxes. In one protected area, grazing animals including Highland cattle were introduced to the area.

S2_2018-2017_Auto12

Figure 72: The Copernicus Sentinel-2B satellite takes us over part of the western Netherlands on 16 March, with the capital city of Amsterdam at the center of the image (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

• April 21, 2017: Lake MacKay is located on the border of the states of Western Australia and Northern Territory, the salt lake only sees water after seasonal rainfall – if at all. It is classified as an ephemeral lake, meaning it exists only after precipitation. This is not the same as a seasonal lake, which sees water for longer periods. Brown hills speckle the eastern part of Australia's Lake MacKay in this satellite image (Figure 73). About half of Australia's rivers drain inland and often end in ephemeral salt lakes. 84)

- The greens and blues in this image show desert vegetation or algae, soil moisture and minerals – mainly salt. On some of the brown ‘islands' and on the shore in the lower right, we can see the east–west sand ridges forming lines in the landscape.

- The lake lies at the edge of the Great Sandy Desert, which covers nearly 285,000 km2. Roads are scarce in the area, and often frequented by four-wheel drive adventurers. Roads include the Canning Stock Route about 300 km to the west of the image, or Tanami Track connecting Australia's Stuart Highway to the Great Northern Highway around 300 km to the east.

- Although Sentinel-2B is still being calibrated following the 7 March launch, the satellite's main instrument is already delivering images, demonstrating its capability to map Earth's land, coast and inland water bodies. Once fully operational, the data will be made available to users for a variety of applications, free of charge.

S2_2018-2017_Auto11

Figure 73: This image of Lake MacKay, Australia, was captured by the Sentinel-2B satellite on 15 March, 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA , CC BY-SA 3.0 IGO)

• April 14, 2017: Sentinel-2A takes us over central-eastern Brazil – more specifically where the Bahia, Tocantins and Goiás states meet. In Figure 74, we can see a large, flat plateau blanked with fields benefiting from rich soils and an apparent abundance of water, before falling off into a green, hilly valley (left). The straight lines in the image are roads, such as the highway running in a nearly straight line from the center-top to bottom of the image. 85)

- The area is particularly known for soybean production. The country's soybean output has increased by more than 3000% since the 1970s, and Brazil is the second largest global producer of soybeans after the US. - Other crops in this area include corn, coffee and cotton.

- A distinctive feature in this image are the circles – mainly at the center. These shapes were created by a central-pivot irrigation system, where a long water pipe rotates around a well at the center of each plot. The varying colors show different types of crop, or different stages of growth.

S2_2018-2017_Auto10

Figure 74: Sentinel-2 image over vast agricultural fields in central-eastern Brazil (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA , CC BY-SA 3.0 IGO)

• March 24, 2017: With the pair of Sentinel-2 satellites now in orbit, users are looking ahead to mapping global land cover at 10 m resolution. Land-cover mapping breaks down the different types of material on Earth's surface, such as water bodies, ice cover, different forms of agriculture or forests, grasslands and artificial surfaces. This information is important for understanding changes in land use, modelling climate change extent and impacts, conserving biodiversity and managing natural resources. 86)

- ESA has been coordinating global land cover maps since 2002 through its GlobCover and Climate Change Initiative (CCI) Land Cover projects at a resolution of 300 m. But with the Copernicus Sentinel-2 pair now becoming operational, the possibility of a global map at 10 m is just on the horizon.

- If realized, this would improve the resolution of the land cover map by a factor of almost 1000: each single pixel from the older map would be replaced by 900 pixels.

- The CCI Land Cover project is working on the first high-resolution prototype map of Africa using Sentinel-2A data. Sentinel-2B joined its twin in orbit on 7 March 2017, increasing the temporal resolution of the mission.

- Last week, the WorldCover2017 conference at ESA/ESRIN in Frascati, Italy brought together some 270 scientists, including representatives from US, Chinese and European organizations to discuss a coordinated action to build the first 10 m resolution global land cover map. 87)

- "From this conference we see significant technical advances," said Professor Chen Jun, First Vice President of the National Geometrics Center of China, which is developing a 2015 land cover map at 30 m. "The future of land cover mapping will rely largely on the benefits that the Copernicus Sentinel-2 constellation will bring in terms of spatial resolution, spectral coverage and revisit together with partner missions."

- He went on to say that his organization is already using data from the Sentinel-2 mission for mapping smaller islands, where a 10 m resolution is necessary.

- At WorldCover2017, the experts also discussed the importance of free and open data access – a policy at the heart of Europe's environment monitoring Copernicus program – and the wider economic benefits of such a policy.

- "The idea is like the GPS systems in your phone: if you have to pay a dollar every time you used it, no one would use it. But because it's free, they built industries off of that signal," explained Matthew Hansen, professor at the University of Maryland in the US. "When Landsat was provided free of charge, applications using it in the US paid for the system within the first year."

S2_2018-2017_AutoF

Figure 75: Mapping African land cover: A 10 m resolution composite prototype map of southern Africa using Sentinel-2A data from last year. A complete African land cover prototype map at 20 m resolution will be made available in July 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA)

S2_2018-2017_AutoE

Figure 76: Evaporation ponds, Namibia: Salt evaporation ponds on the coast of Namibia, an example of data used in land cover mapping (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA)

S2_2018-2017_AutoD

Figure 77: Orange River agriculture, South Africa: Central-pivot agricultural fields along the Orange River in South Africa, an example of data used in land cover mapping (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA)

• March 22. 2017: Today' World Water Day reminds us of the need to treat and reuse wastewater. Satellites like Sentinel-2 provide key information on water quality .The Sentinel-2A satellite takes us over Luzon in the Philippines, with part of the city of Manila in the upper left (Figure 78). We can clearly see a difference in color between the two water bodies: the dark Manila Bay on the left, and lighter Laguna de Bay dominating the center. This is due to differences in depth, with the Laguna reaching a maximum of 4 m during the rainy season. 88)

- One of the most striking features of this image are the black plumes of water pollution visible at the outlets of the Taguig and Pasig rivers, as well as the manmade Manggahan Floodway entering the Laguna de Bay at its northern point.

- Meanwhile, the nearby Manila Bay has been called a ‘pollution hotspot'. Runoff into the water body carry sewage, pesticides, fertilizers and industrial discharges, and other pollutants contribute to the low water quality, as well as sea-based sources of pollution like oil spills.

- Celebrated on 22 March each year, World Water Day 2017 focuses on the theme of wastewater.

- Satellites like Sentinel-2 can help to measure water quality and detect changes in both inland water bodies and coastal zones, supporting the sustainable management of water resources.

S2_2018-2017_AutoC

Figure 78: Sentinel-2A image of Luzon in the Philippines acquired on 8 May 2016 (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA)

• March 20, 2017: The notion of glitter might appear as somewhat frivolous, but scientists are using Sun glitter in images from the Copernicus Sentinel-2 mission to map the motion of the sea surface. - Created by wind blowing across the surface, wave patterns are complex and highly varied. Being able to predict their movement can greatly benefit mariners, port and rig builders, coastal farmers and more. 89)

- Since measurements of waves from buoys and ships are limited in numbers and in coverage, satellites provide the answer over the oceans. As well as the well-established use of measurements of roughness from satellite sensors, Sentinel-2's multispectral camera can also have an important role to play in mapping ocean waves.

S2_2018-2017_AutoB

Figure 79: Glitter reveals swirls: Sun glitter patterns measured by Sentinel-2A in the western Mediterranean Sea in Band. Surface swell waves are seen in a roughly north–south orientation with bright areas showing large breaking waves. The wind was very strong (about 20 m/s) blowing from the west. Dark patches in the image are areas of flows leading to calmer waters and reduced Sun glitter (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA)

- Many images from Sentinel-2 capture the glitter of sunlight that can be turned into a wealth of information about the direction, height and movement of waves.

- Two papers in AGU Publications describe how a team of scientists developed a method to do just this. Highly scattered light means rough seas, for example. They used this information to build a series of detailed images of wave patterns off the coast of Dorre Island in Western Australia (Figure 80). Building on this technique and through ESA's Scientific Assessment of Ocean Glitter project, they were able to map how waves develop in regions where there are strong ocean currents. 90) 91)

- "We went on to test our method on the Agulhas Current, a historically treacherous current around the southernmost coast of Africa," said Vladimir Kudryavstev from the Russian State Hydrometeorological University's Satellite Oceanography Laboratory. Using data collected in January 2016, we traced the behavior of ocean waves and their interactions with currents. We found that ocean surface currents transform dominant surface waves, which are the tallest surface waves in a given area, driven by local wind and large-scale swells. They also showed how wave packets can be deflected and trapped by ocean surface currents, creating surface waves that are much higher than normal."

S2_2018-2017_AutoA

Figure 80: Sun glitter reveals elegant features in this image which was captured by Sentinel-2A off Western Australia. Signatures of internal waves, surface-wind wave can be seen clearly, as well as the ghostly pattern of wave–current interactions that appear as darker swirls and eddy structures. The rigid straight line running roughly north–south in the left of the image marks a Sentinel-2A detector boundary and shows a different intensity of Sun glitter. This is because the detector is physically offset from the adjacent detector, introducing a change in geometry. This feature is exploited in Sun-glitter imagery to determine wave spectrum information (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA)

• March 16, 2017: Mount Etna is the largest active volcano in Europe and has one of the world's longest records for continuous eruption. Today, however, there was a sudden explosion resulting in several people being injured. The red hot lava flowing from Mount Etna can be seen clearly in the image from Sentinel-2A (Figure 81). The surrounding snow has been processed in blue to distinguish from the clouds. 92)

S2_2018-2017_Auto9

Figure 81: This image of the lava flowing from Mount Etna in Sicily, Italy, was captured on 16 March 2017 at 10:45 GMT by the Copernicus Sentinel-2A satellite (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA)

• March 15, 2015: Just over a week after being lofted into orbit, the European Union's Sentinel-2B satellite delivered its first images of Earth, offering a glimpse of the ‘color vision' it will provide for the Copernicus environmental monitoring program. With a swath width of 290 km, the satellite's first acquisition began over the Baltic Sea and made a strip-like observation through eastern Europe, ending in northern Libya. The data were relayed in real time to the Matera ground station in Italy, where the images were then processed. 93)

- While eastern Europe was mostly cloudy, Italy's sunny skies allowed the teams to get their first glimpse of the multispectral instrument's capabilities over southern Italy's Calabria and Apulia regions, the latter often referred to as the ‘heel of the boot'.

- One of more distinctive features of this first acquisition is Apulia's port city of Brindisi – appropriately the same word for the ‘toast' ritual in Italian. Other areas captured in the first pass include the town of Crotone in Calabria and part of Albania's coast.

- The MSI (Multispectral Imager) is being calibrated during the commissioning phase – which will take about three months. Sentinel-2B is the second in the two-satellite mission for Europe's Copernicus program. Its twin Sentinel-2A was launched in June 2015. Now that both are in orbit, Sentinel-2 provides repeat coverage every five days.

- n addition to demonstrating the high resolution of 10 m per pixel, these initial data foreshadow the mission's land-monitoring applications in areas such as agriculture, coastal waters and land-cover mapping.

- "Sentinel-2B will be one of the workhorses of Copernicus, as it will enable a whole range of applications with a focus on land," said Josef Aschbacher, Director of ESA's Earth Observation Programs. "With the second Sentinel-2 satellite in orbit, we now have much better coverage – which is especially important for monitoring areas frequently covered by clouds."

S2_2018-2017_Auto8

Figure 82: Acquired on 15 March 2017, this subset from the first image from Sentinel-2B features the southern Italian port city of Brindisi – appropriately the same word for the ‘toast' ritual in Italian (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA)

S2_2018-2017_Auto7

Figure 83: This image of the Karavasta Lagoon in Albania is a subset from the first acquisition by Sentinel-2B on 15 March 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA)

S2_2018-2017_Auto6

Figure 84: This image of the southern Italian town of Crotone is a subset from the first acquisition by Sentinel-2B on 15 March 2017. This false color image was processed including the instrument's high-resolution infrared spectral channel (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA)

• March 9, 2017: Following three days of intensive work, mission control today declared the newly launched Sentinel-2B satellite fit and ready for commissioning. 94)

• March 6, 2017: The launch site at Kourou lies just over 500 km north of the equator and often sits under clouds. While cloudy skies may not prevent a launch, it does affect our view of the pad. The more recent passes over this area by Sentinel-2A were cloudy; the image of Figure 85 was captured on 20 August 2016. 95)

- The Sentinel-2B satellite is currently poised on top of a Vega rocket on the launch pad (upper left) about 15 km northwest of the main town, and is set for launch on 7 March 2017.

S2_2018-2017_Auto5

Figure 85: Sentinel-2A image of Kourou in French Guiana, with the main town of the same name visible in the lower right (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA)

• March 6, 2017: Automatically stitching together multiple images from Sentinel-2, the Austrian company EOX of Vienna gives us an unobstructed view of Europe (Figure 86). 96)

- Almost 30 TB of Sentinel-2 data were crunched fully automated pixel by pixel using EOX homegrown software combined by Joachim Ungar and Stephan Meißl with further Open Source tools. Supported by the processing power of Amazon Web Services and catalog services by Sinergise, our small team was able to craft this wide-area cloudless map of Europe in a fast and inexpensive manner.

- Sentinel-2 cloudless by EOX IT Services GmbH is provided under a Creative Commons Attribution-ShareAlike 4.0 International License.

S2_2018-2017_Auto4

Figure 86: The Sentinel-2 cloudless layer combines over 8 trillion pixels collected during differing weather conditions in May, June, July, August, and September 2016, and merges them into a sunny homogeneous mosaic, free from atmospheric impacts (image credit: Sentinel-2 cloudless by EOX IT Services GmbH, the image contains modified Copernicus Sentinel data 2016)

• February 10, 2017: The Italian island of Sicily experienced an unusual cold spell and snowfall across parts of southern Europe. As a consequence the mountains of Sicily are visible in white across the northern part of the island. While Italy's northern regions experienced little snowfall this winter, the central and southern areas have seen abnormally cold conditions and snowfall in mountainous areas. 97)

- Mount Etna, an active volcano, is visible at upper right of Figure 87. Positioned over the zone where the African plate collides with and slips under the Eurasian plate, Etna's frequent eruptions are often accompanied by large lava flows, smoke and ash.

- Sentinel-2 provides optical data for land and vegetation monitoring. Its main instrument has 13 spectral bands, and this false-color image was processed including the near-infrared channel – which explains why vegetation appears red. The varying shades of red and other colors across the entire image indicate how sensitive the instrument is to differences in chlorophyll content. This is used to provide key information on plant health; brighter reds indicate healthier vegetation.

S2_2018-2017_Auto3

Figure 87: Part of Sicily is pictured in this false-color image from the Sentinel-2A satellite, acquired on January 8, 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA)

• February 3, 2017: Iran's Musa Bay on the northern end of the Persian Gulf is pictured in this image from the Sentinel-2A satellite. Near the center of Figure 88, we can see the port city of Bandar Imam Khomeini, situated at the terminus of the Trans-Iranian Railway – a route that links the Persian Gulf with Iran's capital, Tehran. 98)

- The dark area to the right of the port is Musa Bay, a shallow estuary. The large geometric structures along the top appear to be evaporation ponds for extracting naturally occurring minerals from the ground. - The left side of the image is dominated by the marshes and mudflats of the Shadegan wildlife refuge. It is the largest wetland in Iran, and plays a significant role in the natural ecology of the area.

- The region provides a wintering habitat for a wide variety of migratory birds, and is the most important site in the world for a rare species of aquatic bird: the marbled duck. The northern part of the wetland is a vital freshwater habitat for many endangered species. This area is considered a wetland of international importance by the RAMSAR Convention, an intergovernmental treaty for the sustainable use of wetlands.

S2_2018-2017_Auto2

Figure 88: This Sentinel-2A image, acquired on January 13, 2017, shows Iran's Musa Bay (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA)

• February 2, 2017: A river delta usually leads to the open sea, but the delta formed by the Okavango River is different. After rising in Angola and flowing through Namibia, the river meanders into Botswana, where it branches out to create an inland delta – one of the world's most important wetlands (Figure 89). 99)

- Wetlands, both coastal and inland, are important for people and the environment. Their many benefits include acting as natural safeguards against disasters, protecting communities most vulnerable to the devastating effects of floods, droughts and storm surges. They also provide a habitat for a multitude of animals and plants, and filter and store water.

- Every year, 2 February marks World Wetlands Day. It commemorates the Convention on Wetlands also known as the RAMSAR Convention, which was signed on 2 February 1971 to provide a framework for national and international cooperation for the conservation and use of wetlands and their resources. This year's theme is ‘Wetlands for Disaster Risk Reduction'.

- Well-managed wetlands provide resilience for communities against extreme weather and help to minimize the damage from these hazards. Coastal wetlands such as mangroves protect against flooding and serve as buffers against saltwater intrusion and erosion. Inland wetlands such as floodplains, lakes and peatlands and deltas like Okavango can reduce the risk of drought.

- The Okavango Delta, a World Heritage site, includes permanent swamps that cover about 15 000 km2 during the dry season but can swell to around three times this size, providing a home for some of the world's most endangered species of large mammals. In sharp contrast, the surrounding Kalahari Desert is a lifeline for local communities and wildlife alike – and therefore it is extremely important that it is well managed.

- Through the GlobWetland Africa project, ESA and the African team of the RAMSAR convention help to use satellite observations for the conservation, wise-use and effective management of wetlands in Africa. Through the project, African stakeholders are provided with methods and tools to fulfil their commitments to RAMSAR.

S2_2018-2017_Auto1

Figure 89: Marking World Wetlands Day, this Sentinel-2A image features the Okavango Delta in Botswana – a lifeline for local communities and wildlife alike. Sentinel-2A captured this image on Dec. 2, 2016 (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA)

• January 13, 2017: Sentinel-2A observed the region of Saint Petersburg in winter. While this image may appear to be in black and white, it is in true color – although the snow cover and lack of vegetation during the winter lend very little color to the scene. 100)

- One of the most prominent features is the large area of ice and snow covering the water. Looking closer to the lower-central part of the image, we can see where icebreakers have created a straight route to and from Saint Petersburg's port. The boats leaving the port continue west following a channel through the Saint Petersburg Dam south of Kotlin Island, and into the Gulf of Finland.

- There are five other breaks along the northern stretch of the dam without ice because the flowing water prevented freezing. - A 25 km-long dam complex protects the city from storm surges, and also acts as a bridge from the mainland to Kotlin Island.

- On the right, the Neva River flows through the center of Saint Petersburg – Russia's second largest city. Sometimes dubbed the ‘Venice of the North' for its numerous canals and more than 400 bridges, the city center dates back to 1703 and was built by Tsar Peter the Great. Today, Saint Petersburg is a UNESCO World Heritage Site.

S2_2018-2017_Auto0

Figure 90: The snow-covered Russian city of Saint Petersburg on the Neva Bay is pictured in this image from the Sentinel-2A satellite (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA)

 


1) "South Georgia Island," ESA, Earth observation image of the week, 21 December 2018, URL: http://m.esa.int/spaceinimages/Images/2018/12/South_Georgia_Island

2) "Chachani, Peru," ESA, Earth observation image of the week, 7 December 2018, URL: http://m.esa.int/spaceinimages/Images/2018/11/Chachani_Peru

3) "Fogo, Cabo Verde," ESA, 16 November, 2018, URL: http://m.esa.int/spaceinimages/Images/2018/11/Fogo_Cabo_Verde

4) Semarang, Indonesia," ESA Earth observation image of the week, 02 November 2018, URL: http://m.esa.int/spaceinimages/Images/2018/11/Semarang_Indonesia

5) "Kyoto and Osaka," ESA,Earth observation image of the week, 26 October, URL: http://m.esa.int/spaceinimages/Images/2018/10/Kyoto_and_Osaka

6) "Zooming in on Mexico's landscape," ESA, 22 October 2018, URL: http://m.esa.int/Our_Activities/Observing_the_Earth/Cope
rnicus/Sentinel-2/Zooming_in_on_Mexico_s_landscape

7) "Lake Disappointment, Australia," ESA, Earth observation image of the week, 19 October 2018, URL: http://m.esa.int/spaceinimages/Images/2018/10/Lake_Disappointment_Australia

8) "South Sudan," ESA, 12 October 2018, URL: http://m.esa.int/spaceinimages/Images/2018/10/South_Sudan

9) "Sentinel-2 maps Indonesia earthquake," ESA, 5 October 2018, URL: http://m.esa.int/Our_Activities/Observing_the_Earth/Copernicus
/Sentinel-2/Sentinel-2_maps_Indonesia_earthquake

10) "Satellites safeguard Europe's potato industry;" ESA, 25 September 2018, URL: http://m.esa.int/Our_Activities/Observing_the_
Earth/Satellites_safeguard_Europe_s_potato_industry

11) "São Miguel, Azores," ESA Earth observation image of the week, 21 September 2018, URL: http://m.esa.int/spaceinimages/Images/2018/09/Sao_Miguel_Azores

12) "ESA chooses Thales Alenia Space to support data processing from Sentinel 2A and 2B Earth observation satellites," Thales Alenia Space, 18 September 2018, URL: https://www.thalesgroup.com/en/worldwide/space/press-
release/esa-chooses-thales-alenia-space-support-data-processing-sentinel-2a

13) "World Water Week: ESA's role in easing water scarcity," ESA, 27 August 2018, URL:http://m.esa.int/Our_Activities/Preparing_for_the_Future/
Space_for_Earth/Space_for_Sustainable_Development/
World_Water_Week_ESA_s_role_in_easing_water_scarcity

14) "Root-zone soil moisture May 2016," ESA, 12 May 2016, URL: http://m.esa.int/spaceinimages/Images/2016
/05/Root-zone_soil_moisture_May_2016

15) "Denmark scorched,"

16) " Botswana wetlands," ESA, 02 February 2017, URL: http://m.esa.int/spaceinimages/Images/2017/02/Botswana_wetlands

17) "Sharm El Sheikh," ESA Earth observation image of the week, 27.07 2018, URL: http://m.esa.int/spaceinimages/Images/2018/07/Sharm_El_Sheikh

18) Kelsea Brennan-Wessels, "Earth from Space: Sharm El Sheikh," ESA, 24 July 2018, URL: https://www.esa.int/spaceinvideos/Videos/2018/
07/Earth_from_Space_Sharm_El_Sheikh

19) "Valencia, Spain," ESA Earth observation image of the week, 20 July 2018, URL: http://m.esa.int/spaceinimages/Images/2018/07/Valencia_Spain

20) "Looming iceberg," ESA, 17 July 2018, URL: http://m.esa.int/spaceinimages/Images/2018/07/Looming_iceberg

21) "Reykjavik, Iceland," ESA Earth from Space, 6 July, 2018, URL: http://m.esa.int/spaceinimages/Images/2018/07/Reykjavik_Iceland

22) "Australian crater," ESA, 29 June 2018, URL: http://m.esa.int/spaceinimages/Images/2018/06/Australian_crater

23) Kelsea Brennan-Wessels, "Earth from Space: Australian crater," ESA, 29 June 2018, URL: http://m.esa.int/spaceinvideos/Videos/2018/
06/Earth_from_Space_Australian_crater

24) "Lake Huron," ESA, 22.06.2018, URL: http://www.esa.int/spaceinimages/Images/2018/06/Lake_Huron

25) Kelsea Brennan-Wessels, "Earth from Space: Lake Huron," ESA, 22.06.2018, URL: http://www.esa.int/spaceinvideos/Videos/
2018/06/Earth_from_Space_Lake_Huron

26) "Mount Makalu, Himalayas," ESA Earth observation image of the week , 15 June 2018, URL: http://m.esa.int/spaceinimages/Images/2018/06/Mount_Makalu_Himalayas

27) Kelsea Brennan-Wessels,"Earth from Space: Mount Makalu," 15 June 2018, URL: http://m.esa.int/spaceinvideos/Videos/2018/
06/Earth_from_Space_Mount_Makalu

28) "Hawaii lava flow," ESA, 8 June 2018, URL: http://m.esa.int/spaceinimages/Images/2018/06/Hawaii_lava_flow

29) "Zambezi Delta diversity," ESA, 22 May 2018, URL: http://www.esa.int/spaceinimages/Images/2018/05/Zambezi_Delta_diversity

30) "Mont Saint-Michel, France," ESA, 18 May 2018, URL: http://m.esa.int/spaceinimages/Images/2018/05/Mont_Saint-Michel_France

31) "Columbia Glacier," ESA, 11 May 2018, URL: http://m.esa.int/spaceinimages/Images/2018/05/Columbia_Glacier

32) "Earth from Space: Columbia Glacier," ESA, 11 May 2018, URL: http://m.esa.int/spaceinvideos/Videos/2018/
05/Earth_from_Space_Columbia_Glacier

33) "Emi Koussi," ESA, 04 May 2018, URL: http://m.esa.int/spaceinimages/Images/2018/05/Emi_Koussi

34) "Henderson Island," ESA Earth observation image of the week, Sentinel-2 shows us a remote South Pacific island, which may look untouched by humans but is littered with tonnes of plastic , 20 April 2018, URL: http://m.esa.int/spaceinimages/Images/2018/04/Henderson_Island

35) "Earth from Space: Henderson Island," ESA, 20 April 2018, URL: http://m.esa.int/spaceinvideos/Videos/2018/04/
Earth_from_Space_Henderson_Island

36) "Hyderabad, India," ESA Earth observation image of the week, 13 April, 2018, URL: http://m.esa.int/spaceinimages/Images/2018/04/Hyderabad_India

37) "Earth from Space: Hyderabad," ESA video program, Kelsea Brennan-Wessels, 13 April 2018, URL: http://m.esa.int/spaceinvideos/Videos/2018/04/Earth_from_Space_Hyderabad

38) "Egg Island, Bahamas," ESA Earth observation image of the week, 30 March 2018, URL: http://m.esa.int/spaceinimages/Images/2018/03/Egg_Island_Bahamas

39) "Earth from Space: Egg Island," ESA, 30 March 2018, URL: http://m.esa.int/spaceinvideos/Videos/2018/03/Earth_from_Space_Egg_Island

40) "Turning snow orange," ESA, 26 March 2018, URL: http://m.esa.int/spaceinimages/Images/2018/03/Turning_snow_orange

41) "Netherlands ice," ESA Earth observation image of the week: a Sentinel-2 view of rare ice in the Netherlands, 23 March 2018, URL: http://m.esa.int/spaceinimages/Images/2018/03/Netherlands_ice

42) "Earth from Space: Netherlands ice," ESA, 23 March 2018, URL: http://m.esa.int/spaceinvideos/Videos/2018
/03/Earth_from_Space_Netherlands_ice

43) "Giving up forests," ESA, 21 March 2018, URL: http://m.esa.int/spaceinimages/Images/2018/03/Giving_up_forests

44) "Sentinels helping to map minerals," ESA, 20 March 2018, URL: http://m.esa.int/Our_Activities/Observing
_the_Earth/Sentinels_helping_to_map_minerals

45) "Tokyo,", ESA Earth observation image of the week, 16 March 2018, URL: http://m.esa.int/spaceinimages/Images/2018/03/Tokyo

46) "Earth from Space: Tokyo," 15 March, 2018, URL: http://m.esa.int/spaceinvideos/Videos/2018/03/Earth_from_Space_Tokyo

47) "Full house for EDRS," ESA, 13 March 2018, URL: http://m.esa.int/Our_Activities/Telecommunication
s_Integrated_Applications/EDRS/Full_house_for_EDRS

48) "SpaceDataHighway starts full Copernicus service," Airbus, 19 March 2018, URL: http://www.airbus.com/newsroom/press-releases/en/
2018/03/SpaceDataHighway-starts-full-Copernicus-service.html

49) "The Ganges Delta, relayed by EDRS-A," ESA, 14 Nov. 2017, URL: http://m.esa.int/spaceinimages/Images/2017/11/
The_Ganges_Delta_relayed_by_EDRS-A

50) "Southeast Namibia," ESA Earth observation image of the week, 02 March 2018, URL: http://m.esa.int/spaceinimages/Images/2018/03/Southeast_Namibia

51) "Earth from Space: Southeast Namibia," ESA, 02 March 2018, URL: http://m.esa.int/spaceinvideos/Videos/2018/02/Earth_from_Space_Southeast_Namibia

52) "Beijing," ESA, Earth observation image of the week: with the Chinese calendar rolling over into a new year today, the Sentinel-2 mission offers us a view of the country's capital, 16 Feb. 2018, URL: http://m.esa.int/spaceinimages/Images/2018/02/Beijing

53) "Tunis wetlands," ESA Earth observation image of the week, 02 Feb. 2018, URL: http://m.esa.int/spaceinimages/Images/2018/02/Tunis_wetlands

54) "Earth from Space: Tunis wetlands," 2 Feb. 2018, URL: http://m.esa.int/spaceinvideos/Videos/2018/02/Earth_from_Space_Tunis_wetlands

55) "Yukon Delta,", ESA Earth observation image of the week, 26 January, URL: http://m.esa.int/spaceinimages/Images/2018/01/Yukon_Delta

56) "Marajó, Brazil," ESA Earth observation image of the week, 19. Jan. 2018, URL: http://m.esa.int/spaceinimages/Images/2018/01/Marajo_Brazil

57) "Sahara snow," ESA, Earth observation image of the week, 12 Jan. 2018, URL: http://m.esa.int/spaceinimages/Images/2018/01/Sahara_snow

58) "Reindeer Island," ESA Earth observation image of the week, 22 Dec. 2017, URL: http://m.esa.int/spaceinimages/Images/2017/12/Reindeer_Island

59) "Toulouse, France," ESA Earth observation image of the week, 8 Dec. 2017, URL: http://m.esa.int/spaceinimages/Images/2017/12/Toulouse_France

60) "Amazon River," ESA Earth observation image of the week, 1 Dec. 2017, URL: http://m.esa.int/spaceinimages/Images/2017/12/Amazon_River

61) "Salar de Atacama, Chile," ESA, Earth observation image of the week, 17, Nov. 2017, URL: http://m.esa.int/spaceinimages/Images/2017/11/Salar_de_Atacama_Chile

62) "Viti Levu, Fiji," ESA, Nov. 10, 2017, URL: http://m.esa.int/spaceinimages/Images/2017/11/Viti_Levu_Fiji

63) "Africa, classified," ESA, 3 October 2017, URL: http://m.esa.int/Our_Activities/Observing_the_
Earth/Space_for_our_climate/Africa_classified

64) African land cover," ESA, Oct. 3, 2017, URL: http://m.esa.int/spaceinimages/Images/2017/10/African_land_cover

65) "Nordenskiold Glacier, Greenland," ESA, Earth observation image of the week, 29 Sept. 2017, URL: http://m.esa.int/spaceinimages/Images/2017
/09/Nordenskiold_Glacier_Greenland

66) "Northwest England," ESA Earth observation image of the week, 22 Sept. 2017, URL: http://m.esa.int/spaceinimages/Images/2017/09/Northwest_England

67) "Syracuse, Italy," ESA Earth observation image of the week, 15 Sept. 2017, URL: http://m.esa.int/spaceinimages/Images/2017/09/Syracuse_Italy

68) "Petermann Glacier, Greenland," ESAEarth observation image of the week, 8 Sept. 2017, URL: http://m.esa.int/spaceinimages/Images/
2017/09/Petermann_Glacier_Greenland

69) "Sentinel-2 cloudless," EOX IT Services GmbH, 29 Aug. 2017, URL: https://s2maps.eu/

70) "Sentinel-2 global cloudless mosaic," EOX, URL: https://eox.at/2017/08/sentinel-2-global-cloudless-mosaic/

71) "Kalamos fires," ESA, 23 Aug. 2017, URL: http://www.esa.int/spaceinimages/Images/2017/08/Kalamos_fires

72) "Pilanesberg, South Africa," ESA Earth observation image of the week , 14 July 2017, URL: http://m.esa.int/spaceinimages/Images/2017/07/Pilanesberg_South_Africa

73) "Vesuvius on fire," ESA, 13 July 2017, URL: http://m.esa.int/spaceinimages/Images/2017/07/Vesuvius_on_fire

74) "Uyuni salt flat, Bolivia," ESA, Earth observation image of the week, July 7, 2017, URL: http://m.esa.int/spaceinimages/Images/2017/07/Uyuni_salt_flat_Bolivia

75) "Forestry TEP in pre-operation phase," ESA July 4, 2017, URL: https://earth.esa.int/web/guest/missions/esa-operational
-eo-missions/sentinel-2/news/-/article/forestry-tep-in-pre-operation-phase

76) "Ambrym, South Pacific Ocean," ESA, June 30, 2017, URL: http://www.esa.int/spaceinimages/Images/2017/
06/Ambrym_South_Pacific_Ocean

77) "First Sentinel-2B images delivered by laser," ESA, 12 June 2017, URL: http://m.esa.int/Our_Activities/Observing_the_Earth/
Copernicus/Sentinel-2/First_Sentinel-2B_images_delivered_by_laser

78) "Sentinel-2 captures coral bleaching of Great Barrier Reef," ESA, 24 May 2017, URL: : http://m.esa.int/Our_Activities/Observing_the
_Earth/Copernicus/Sentinel-2/Sentinel-2_captures_
coral_bleaching_of_Great_Barrier_Reef

79) "Field campaign results," ESA, 24.May 2017, URL: http://m.esa.int/spaceinimages/Images/2017/05/Field_campaign_results

80) "Bringing satellite data to farmers," ESA, May 24, 2017, URL: http://m.esa.int/Our_Activities/Observing_the_
Earth/Copernicus/Bringing_satellite_data_to_farmers

81) "Rann of Kutch, India," ESA, Earth observation image of the week, May 19, 2017, URL: http://m.esa.int/spaceinimages/Images/2017/05/Rann_of_Kutch_India

82) "Uintah Basin," ESA Earth observation image of the week, May 12. 2017, URL: http://www.esa.int/spaceinimages/Images/
2017/05/Uintah_Basin_United_States

83) "Amsterdam, The Netherlands," ESA, Earth observation image of the week, May 5, 2017, URL: http://m.esa.int/spaceinimages/Images/2017/05/Amsterdam_Netherlands

84) "Lake MacKay, Australia," ESA Earth observation image of the week, 21 April 2017, URL: http://www.esa.int/spaceinimages/Images/2017/04/Lake_MacKay_Australia

85) "Central-eastern Brazil," ESA, Earth observation image of the week, April 14, 2017, URL: http://www.esa.int/spaceinimages/Images/2017/04/Central-eastern_Brazil

86) "Improving land cover mapping with Sentinel-2," ESA, March 24, 2017, URL: http://m.esa.int/Our_Activities/Observing_the_Earth/
Improving_land_cover_mapping_with_Sentinel-2

87) "WorldCover 2017 Conference," Frascati, Italy, 14-16 March 2017, URL: http://worldcover2017.esa.int/

88) "Manila Bay and Laguna de Bay," ESA, March 22, 2017, URL: http://m.esa.int/spaceinimages/Images/2017
/03/Manila_Bay_and_Laguna_de_Bay

89) "Glitter helps to monitor ocean waves," ESA, March 20, 2017, URL: http://m.esa.int/Our_Activities/Observing_the_Earth/
Copernicus/Sentinel-2/Glitter_helps_to_monitor_ocean_waves

90) Vladimir Kudryavtsev, Maria Yurovskaya, Bertrand Chapron, Fabrice Collard, Craig Donlon,"Sun glitter imagery of ocean surface waves. Part 1: Directional spectrum retrieval and validation," Journal of Geophysical Research: Oceans, Vol. 122, published online 21 February 2017, DOI: 10.1002/2016JC012425, URL of abstract: http://onlinelibrary.wiley.com/doi/10.1002/2016JC012425/abstract

91) Vladimir Kudryavtsev, Maria Yurovskaya, Bertrand Chapron, Fabrice Collard, Craig Donlon, "Sun glitter imagery of surface waves. Part 2: Waves transformation on ocean currents," Journal of Geophysical Research: Oceans, Vol. 122, published online 20 February 2017, DOI: 10.1002/2016JC012426, URL of abstract: http://onlinelibrary.wiley.com/doi/10.1002/2016JC012426/full

92) "Etna erupts," ESA, March 16, 2017, URL: http://m.esa.int/spaceinimages/Images/2017/03/Etna_erupts

93) "A ‘toast' to Copernicus Sentinel-2B as it delivers its first images," ESA, March 15, 2017, URL: http://m.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/
A_toast_to_Copernicus_Sentinel-2B_as_it_delivers_its_first_images

94) "Orbiting in sunshine," ESA, March 9, 2017, URL: http://m.esa.int/Our_Activities/Operations/Orbiting_in_sunshine

95) "Kourou, French Guiana," ESA, March 6, 2017, URL: http://m.esa.int/spaceinimages/Images/2017/03/Kourou_French_Guiana

96) "Sentinel-2 cloudless," EOX IT Services GmbH, URL: https://s2maps.eu/

97) "Sicilian snow," ESA Earth observation image of the week, Feb. 10, 2017, URL: http://m.esa.int/spaceinimages/Images/2017/02/Sicilian_snow

98) "Musa Bay, Iran," ESA Earth observation image of the week, Feb. 3, 2017, URL: http://m.esa.int/spaceinimages/Images/2017/02/Musa_Bay_Iran

99) "Botswana wetlands," ESA, Feb. 2, 2017, URL: http://m.esa.int/spaceinimages/Images/2017/02/Botswana_wetlands

100) Saint Petersburg," ESA Earth observation image of the week, Jan. 13, 2017, URL: http://m.esa.int/spaceinimages/Images/2017/01/Saint_Petersburg
 


The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: "Observation of the Earth and Its Environment: Survey of Missions and Sensors" (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (herb.kramer@gmx.net).

 

Minimize Related Missions

The Sentinel series:

Provides data continuity for: