Skip to content
eoPortal

Satellite Missions Catalogue

Copernicus: Sentinel-2 - 2020

May 4, 2021

Back to main article

Mission status and some imagery of 2020

References   

• December 11, 2020: The Copernicus Sentinel-2 mission takes us over Kyiv – the capital and most populous city of Ukraine. 1)

- Kyiv, also spelled Kiev, is visible just below the center of the image, along the Dnieper River in north-central Ukraine. The city covers a total area of around 840 km2 and is home to approximately three million people.

Figure 1: Originally just on the west bank, today the city of Kyiv spreads across both sides of the Dnieper River, which flows southwards through the city. The Dnieper is the fourth-longest river in Europe, after the Volga, Danube and Ural rivers. It rises on the southern slopes of the Valdai Hills of Russia and flows in a southerly direction through western Russia, Belarus and Ukraine to the Black Sea. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA)
Figure 1: Originally just on the west bank, today the city of Kyiv spreads across both sides of the Dnieper River, which flows southwards through the city. The Dnieper is the fourth-longest river in Europe, after the Volga, Danube and Ural rivers. It rises on the southern slopes of the Valdai Hills of Russia and flows in a southerly direction through western Russia, Belarus and Ukraine to the Black Sea. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA)

- Directly above the city of Kyiv is the Kyiv Reservoir – a large water reservoir which is 110 km in length and 12 km in width. The reservoir is mainly used for irrigation, hydroelectricity generation and industrial and public consumption.

- The neon green colors in the Kyiv Reservoir indicate a high quantity of algae. Algal blooms are dense layers of microscopic plants that occur on the surface of lakes, or other bodies of water, when there is an overabundance of nutrients on which algae depend. These high levels of nutrients are often caused by human pollution, such as wastewater or fertilizer runoff from agriculture.

- Owing to Ukraine’s climate and arable land, agriculture plays a large role in the country’s economy. Large, agricultural plots dominate this week’s image, with corn, wheat and barley being the country’s main crops. With over 40 million hectares of agricultural land covering 70% of the country, agriculture is Ukraine’s largest export industry.

• December 4, 2020: The Copernicus Sentinel-2 mission takes us over the Banks Peninsula on the South Island of New Zealand. 2)

- Banks Peninsula, visible in the bottom-right of the image, consists of two overlapping extinct volcanoes: the Lyttelton Volcano and the Akaroa Volcano. The peninsula was formed by several volcanic eruptions that took place around eight million years ago. The name of the peninsula comes from Sir Joseph Banks, a British biologist who sailed with Captain Cook.

- Breaches in the crater walls led to the formation of two long, thin harbors: Lyttelton in the north and Akaroa in the south. The peninsula also has many other smaller bays and coves, giving it its unusual, cogwheel shape. Christchurch, the largest city on South Island, is visible immediately north of Banks Peninsula.

- The Rangitata, Rakaia and Waimakariri are the principal rivers visible in the image flowing southeast from the Southern Alps. The Rakaia river, visible in the center of the image, is one of the largest braided rivers in New Zealand. The river travels for around 150 km before entering the Pacific Ocean. The turquoise colors visible in the ocean suggest the presence of sediment being carried into the ocean by river discharge, as well as algal blooms.

- Between Rakaia river and the Banks Peninsula, lies Lake Ellesmere (Te Waihora). The lake is actually a shallow, coastal lagoon, with its emerald green colors most likely due to a high concentration of chlorophyll. The long stretch of land, visible in brown south of the lagoon, is the Kaitorete Spit and is a barrier that separates the lagoon from the Pacific Ocean.

Figure 2: The Banks Peninsula's jagged coastline heavily contrasts with the adjoining, flat Canterbury Plains. Extending around 80 km inland from the coast to the foothills of the Southern Alps, visible in the top-left of the image, the plains are a rich agricultural region known for wheat and barley, as well as wool and livestock. This Sentinel-2 image, captured on 4 January 2019, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 2: The Banks Peninsula's jagged coastline heavily contrasts with the adjoining, flat Canterbury Plains. Extending around 80 km inland from the coast to the foothills of the Southern Alps, visible in the top-left of the image, the plains are a rich agricultural region known for wheat and barley, as well as wool and livestock. This Sentinel-2 image, captured on 4 January 2019, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

• November 27, 2020: In this week's edition of the Earth from Space program, the Copernicus Sentinel-2 mission takes us over Kiruna, the northernmost town in Sweden. 3)

Figure 3: Kiruna, visible in darker tones just left of the center in the snow-covered image, is located in the county of Norrbotten and is around 145 km north of the Arctic Circle. The city, with a population of around 22,000 inhabitants, is on the eastern shore of Lake Luossa (Luossajärvi), between the iron-ore Kiruna (Kiirunavaara) and Luossa (Luossavaara) mountains. A Sentinel-2 spacecraft captured this image on 27 May 2020. It is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 3: Kiruna, visible in darker tones just left of the center in the snow-covered image, is located in the county of Norrbotten and is around 145 km north of the Arctic Circle. The city, with a population of around 22,000 inhabitants, is on the eastern shore of Lake Luossa (Luossajärvi), between the iron-ore Kiruna (Kiirunavaara) and Luossa (Luossavaara) mountains. A Sentinel-2 spacecraft captured this image on 27 May 2020. It is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

- Around 20 km east of Kiruna, the small town of Jukkasjärvi is visible, and is best known for its annual ice hotel constructed from snow and ice blocks taken from the nearby Torne River. Thin, dark lines cutting across the image are roads that connect the towns with other parts of Sweden.

- At a latitude of almost 68º, around 40 km east of Kiruna, lies ESA’s Kiruna ground station, which in September 2020 celebrated 30 years of space excellence. The station is hard to spot, but is located in the center-right of the image, just above a dark lake.

- Ideally positioned to support polar-orbiting missions, the station is a crucial gateway for much of the data enabling us to study our planet’s oceans, water and atmosphere, forecast weather and understand the rapid advance of climate change.

- Kiruna ground station is part of the Agency’s tracking station network – Estrack – a worldwide network linking satellites in orbit and across the Solar System with ESA’s Space Operations Centre, ESOC, in Darmstadt, Germany. The station features two sophisticated terminals with 15 m and 13 m-diameter antennas to communicate with satellites in Earth’s orbit, including CryoSat, Swarm, Copernicus Sentinel-1 and the recently-launched Sentinel-6 Michael Freilich satellite.

- While the North Pole Satellite Station in Alaska caught the spacecraft’s first signals from space after separation from the launcher, the Kiruna ground station tracked the satellite’s first days. EUMETSAT then completed the final ‘orbit acquisition,’ taking over responsibility for commissioning, routine operations and distribution of the mission’s vital data.

- While Sentinel-6 is one of the European Union’s family of Copernicus missions, its implementation is the result of the unique collaboration between ESA, NASA, EUMETSAT and NOAA, with contribution from the French space agency CNES.

• November 20, 2020: The Vandenberg Air Force Base, in California, US, where the Copernicus Sentinel-6 Michael Freilich satellite will soon launch from, is featured in this image captured by the Copernicus Sentinel-2 mission. 4)

Figure 4: The area pictured here shows the Santa Barbara County in the southern region of the US state of California. Located around 200 km northwest of Los Angeles, the county spans across 7,000 km2 and is bordered by the Pacific Ocean to the west and south. This image, captured on 14 August 2020, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 4: The area pictured here shows the Santa Barbara County in the southern region of the US state of California. Located around 200 km northwest of Los Angeles, the county spans across 7,000 km2 and is bordered by the Pacific Ocean to the west and south. This image, captured on 14 August 2020, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

- The county includes the coastal city of Santa Barbara, partially visible in the lower right of the image. Santa Barbara lies between the steeply rising Santa Ynez Mountains, visible in dark green directly above, and the Pacific Ocean. The mountains rise dramatically behind the city with several peaks exceeding 1200 m.

- Other mountain ranges in the county include the San Rafael Mountains, visible directly above, and the Sierra Madre Mountains. Most of the mountainous area is within the Los Padres National Forest – California’s second largest national forest.

- The county’s most populous city is Santa Maria, visible in the top left of the image, surrounded by a patchwork of agricultural plots. Like many other cities in California, Santa Maria experiences a Mediterranean climate.

- Below Santa Maria lies the Vandenberg Air Force Base – visible along the coast. It is here, where the Copernicus Sentinel-6 Michael Freilich satellite will launch from. A joint European-US satellite built to monitor sea levels, the satellite will liftoff atop a Space X Falcon 9 rocket on 21 November at 18:17 CET (09:17 PST). The satellite, named after Michael Freilich, the former NASA director who advocated for advancing satellite measurements, will extend a nearly 30-year continuous dataset on sea level.

- It will be the first ESA-developed satellite to be given a ride into space on the SpaceX Falcon 9 rocket. Famously, Falcon 9 is partially reusable – unlike most rockets which are expendable launch systems. Once in orbit some 1336 km above Earth, the Sentinel-6 Michael Freilich satellite will collect sea level measurements for 95% of Earth’s ice-free oceans. The data will be essential for climate science, policy-making and protecting those in low-lying regions.

• November 13, 2020: The Copernicus Sentinel-2 mission takes us over Darmstadt – home to ESA’s ESOC (European Space Operations Centre). 5)

Figure 5: The image pictured here shows the Frankfurt Rhine-Main region in south-central Germany. With a population of almost six million people, the region includes the main cities of Frankfurt, Wiesbaden, Offenbach and Darmstadt. Frankfurt, Germany’s fifth-largest city, is visible at the top of the image, located on both sides of the Main River. The southern part of the city contains the Frankfurt City Forest, the largest inner-city forest in Germany, visible in dark green. Frankfurt Airport can be easily spotted southwest of the city center. This image, captured on 23 June 2020, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 5: The image pictured here shows the Frankfurt Rhine-Main region in south-central Germany. With a population of almost six million people, the region includes the main cities of Frankfurt, Wiesbaden, Offenbach and Darmstadt. Frankfurt, Germany’s fifth-largest city, is visible at the top of the image, located on both sides of the Main River. The southern part of the city contains the Frankfurt City Forest, the largest inner-city forest in Germany, visible in dark green. Frankfurt Airport can be easily spotted southwest of the city center. This image, captured on 23 June 2020, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

- The Rhine River can be seen in the left of the image. The river flows for around 1230 km in a northerly direction through Germany and the Netherlands, before emptying into the North Sea. Darmstadt is located between the Rhine and the Odenwald, a forested plain in the bottom-right of the image. Darmstadt is often referred to as a ‘City of Science,’ as it’s a major centre of scientific institutions including ESA’s European Space Operations Centre (ESOC) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT).

- ESOC is home to the engineering teams that control spacecraft in orbit and across the Solar System. On 21 November, the Copernicus Sentinel-6 Michael Freilich ocean-monitoring satellite will launch on a Space X Falcon 9 rocket from California, US, and once safely in orbit, ESA’s ESOC Operations Centre will take over the reins.

- Copernicus Sentinel-6 Michael Freilich will replace the Jason series of satellites currently providing data on Earth’s oceans. Over the subsequent days after launch, the Sentinel-6 mission control team will maneuver the satellite into its correct path, which will fly in tandem with the Jason-3 spacecraft it will replace, and then fall into position right behind it.

- Once the Sentinel is through the critical early phase and drifts towards its target orbit, EUMETSAT will complete the final ‘orbit acquisition’ and take on responsibility for commissioning, routine operations and distribution of the mission’s vital data.

- Copernicus Sentinel-6 will join a fleet of Earth’s monitoring spacecraft in the low-Earth orbit – flying at a mean altitude of 1336 km. ESA’s Space Debris Office, also based at ESOC, will be on-hand through the critical early days, monitoring and calculating the risk of collisions with swirling space debris and advising on how to keep the mission safe.

• November 12, 2020: Data from the Copernicus Sentinel satellites are enabling the national monitoring of agricultural activity in Poland – a colossal task that will support the efforts of key national agencies to assess a country’s cropland, productivity, and food security, as well as the implementation of the EU Common Agricultural Policy in years to come. 6)

- The data, acquired by the Copernicus Sentinel-1 and Sentinel-2 satellites and processed by ESA’s EOStat project, are being used by Statistics Poland, the country’s Central Statistical Office (or GUS – Glowny Urzad Statystyczny).

- EOStat aims to bring together ground-based and Earth observation tools to collect agricultural information, with the Sentinels being a key component. Together, these Sentinels image land and sea at a high resolution, identifying characteristics such as vegetation type, soil cover, and waterways from space.

- Monitoring and assessing agricultural data is an essential task, and typically performed once a year in Poland via Statistics Poland's agricultural survey. This survey is also scaled up every decade, as it is in 2020, in the form of a Decadal Agricultural Census supported by Eurostat (the EU’s statistical office), which collects some 300 variables covering different aspects of farming such as general farmland characteristics, livestock, the labor force, animal housing, and support measures for rural development.

- Therefore, while essential, this task is also immense – especially so given that Poland has some of the most agricultural holdings (over 1.5 million) and arable land (14.7 million hectares) within the EU-27, and is also the fifth-largest beneficiary of the EU Common Agricultural Policy (CAP).

- The agricultural census traditionally comprises field and household surveys, but, this year, will be able to make the most of Sentinel data to characterize geospatial and crop type characteristics in Poland.

Figure 6: EOStat mapping of crop type in Poland. These two maps show the various crop types identified and mapped in the 2019 and 2020 vegetation seasons in Poland by the ESA EOStat project, which uses data from the Copernicus Sentinel-1 and Sentinel-2 satellites. Crop types explored: barley (spring and winter), wheat (spring and winter), triticale (spring and winter), rapeseed (spring and winter) buckwheat, oat, rye, maize, grassland and other. The same five regions are also identified in each map (for 2019 and 2020: Żuławy Wiślane, Wiekopolska północ, Podlasie, Wielkopolska południe and Dolnośląskie), with a closer view of crop diversification shown in the inset boxes. The map scale is shown to the bottom center (in kilometers), image credit: EOStat (ESA/IGiK/CBK PAN)
Figure 6: EOStat mapping of crop type in Poland. These two maps show the various crop types identified and mapped in the 2019 and 2020 vegetation seasons in Poland by the ESA EOStat project, which uses data from the Copernicus Sentinel-1 and Sentinel-2 satellites. Crop types explored: barley (spring and winter), wheat (spring and winter), triticale (spring and winter), rapeseed (spring and winter) buckwheat, oat, rye, maize, grassland and other. The same five regions are also identified in each map (for 2019 and 2020: Żuławy Wiślane, Wiekopolska północ, Podlasie, Wielkopolska południe and Dolnośląskie), with a closer view of crop diversification shown in the inset boxes. The map scale is shown to the bottom center (in kilometers), image credit: EOStat (ESA/IGiK/CBK PAN)

- “Implementing large-scale crop identification and monitoring with Copernicus data is a backbone of our strategy to improve the accuracy and effectiveness of agriculture statistics,” says Artur Łączyński, Director of Statistics Poland’s Agriculture department. The data and services developed in the EOStat project will also be used to support the national paying agency – ARiMR – responsible for implementing the EU CAP in Poland.

- “The EOStat project is a big step towards country-scale monitoring of agriculture at the field level,” adds Jedrzej Bojanowski of the Institute of Geodesy and Cartography (IGiK), Poland, and EOStat Project Coordinator. “We have developed novel algorithms for classifying crop types, monitoring agricultural activity, and forecasting crop yields for the main administrative units, and optimized these algorithms so they can be applied across the entire country.”

Figure 7: These two charts show the various crop types identified and monitored in the 2019 and 2020 vegetation seasons in Poland by the ESA EOStat project, which uses data from the Copernicus Sentinel-1 and Sentinel-2 satellites. Crop types explored: barley (spring and winter), wheat (spring and winter), triticale (spring and winter), rapeseed (spring and winter) buckwheat, oat, rye, maize, grassland and other [image credit: EOStat (ESA/IGiK/CBK PAN)]
Figure 7: These two charts show the various crop types identified and monitored in the 2019 and 2020 vegetation seasons in Poland by the ESA EOStat project, which uses data from the Copernicus Sentinel-1 and Sentinel-2 satellites. Crop types explored: barley (spring and winter), wheat (spring and winter), triticale (spring and winter), rapeseed (spring and winter) buckwheat, oat, rye, maize, grassland and other [image credit: EOStat (ESA/IGiK/CBK PAN)]

- Drawing from Sentinel data, EOStat provides information on the spatial extent of the 13 most popular crops in Poland – eight cereals, winter and spring rapeseed, buckwheat, maize and grasslands – and employs a novel methodology able to monitor small, irregular parcels of agricultural land (a particular issue in Poland, where over half of the country's parcels do not exceed five hectares).

- The products generated by EOStat will become a key element of Statistics Poland's new large-scale system for assessing crop condition, type, and potential yield, which will be the basis of Poland’s agricultural statistics reporting process after 2021.

- “This project shows just how well Sentinel satellites fit both national and European needs for quality data and information services,” says Anna Burzykowska, ESA Technical Officer. “In the span of only two years we have managed to define and deliver complete end-to-end data processing chains based on the synergistic use of Sentinel and in situ data to support various assessments related to official statistics, national food security and natural capital accounting. EOStat truly demonstrates the tremendous Europe-wide value of the Sentinels.”

- Up to 18 terabytes of data were processed for the 2019 and 2020 vegetation seasons using CreoDIAS, a cloud infrastructure designed and adapted to process large amounts of EO data.

Figure 8: This image shows some of the EOStat project’s key figures at a glance, including the amount of Sentinel data processed, crop types classified, and the extent of agricultural land in Poland. The EOStat team developed a new, computationally efficient algorithm based on Copernicus Sentinel-2 data to verify whether an agricultural parcel is cultivated or not. For each of the 6 million suitable parcels of land, information is provided on the sowing and harvesting dates of main and catch-crops, together with the delineation of parcels susceptible to erosion (meeting the monitoring requirements of the new EU Common Agricultural Policy, and providing indication for the effectiveness of its soil conservation measures), image credit: EOStat (ESA/IGiK/CBK PAN)
Figure 8: This image shows some of the EOStat project’s key figures at a glance, including the amount of Sentinel data processed, crop types classified, and the extent of agricultural land in Poland. The EOStat team developed a new, computationally efficient algorithm based on Copernicus Sentinel-2 data to verify whether an agricultural parcel is cultivated or not. For each of the 6 million suitable parcels of land, information is provided on the sowing and harvesting dates of main and catch-crops, together with the delineation of parcels susceptible to erosion (meeting the monitoring requirements of the new EU Common Agricultural Policy, and providing indication for the effectiveness of its soil conservation measures), image credit: EOStat (ESA/IGiK/CBK PAN)

- “It took just six days to process the data for one season thanks to our direct access to Sentinel data and the large processing power of CreoDIAS," says Edyta Woźniak of the Polish Academy of Sciences’ Space Research Center (CBK PAN), who led the EOStat crop identification effort. “On our local machines it could take as long as five weeks.”

- Josef Aschbacher, ESA’s Director of Earth Observation Programs, added, "Information from the Sentinels is finding a myriad of uses to improve daily lives. I am thrilled that both Sentinel-1 and Sentinel-2 missions are enabling the monitoring of agricultural activity on a national scale. The data is vital to monitoring food security and supporting the implementation of the Common Agricultural Policy.”

- Ultimately, EOStat aims to provide Statistics Poland with the ability to regularly acquire, process, and use EO data, and to support ARiMR monitoring of crop diversification, agricultural activity, and Ecological Focus Areas (as ESA also does via Sen4CAP). EOStat is led by a scientific consortium of remote sensing specialists from IGiK and CBK PAN, and financed by ESA’s Polish Industry Incentive Scheme and Earth Observation Envelope Program-5.

Figure 9: Next-generation monitoring of agricultural activity in Poland. Data from the Copernicus Sentinel satellites are enabling the national monitoring of agricultural activity in Poland – a colossal task that will support the efforts of key national agencies to assess a country’s cropland, productivity, and food security, as well as the implementation of the EU Common Agricultural Policy in years to come. The data, acquired by the Copernicus Sentinel-1 and Sentinel-2 satellites and processed by ESA’s EOStat project, is being used by Statistics Poland, the country’s Central Statistical Office (or GUS – Glowny Urzad Statystyczny). The products generated by EOStat will become a key element of Statistics Poland's new large-scale system for assessing crop condition, type, and potential yield, which will be the basis of Poland’s agricultural statistics reporting process after 2021 (image credit: pixabay / marcinjozwiak)
Figure 9: Next-generation monitoring of agricultural activity in Poland. Data from the Copernicus Sentinel satellites are enabling the national monitoring of agricultural activity in Poland – a colossal task that will support the efforts of key national agencies to assess a country’s cropland, productivity, and food security, as well as the implementation of the EU Common Agricultural Policy in years to come. The data, acquired by the Copernicus Sentinel-1 and Sentinel-2 satellites and processed by ESA’s EOStat project, is being used by Statistics Poland, the country’s Central Statistical Office (or GUS – Glowny Urzad Statystyczny). The products generated by EOStat will become a key element of Statistics Poland's new large-scale system for assessing crop condition, type, and potential yield, which will be the basis of Poland’s agricultural statistics reporting process after 2021 (image credit: pixabay / marcinjozwiak)

• October 16, 2020: The Copernicus Sentinel-2 mission takes us over Zeeland – the westernmost province in the Netherlands. 7)

- Located around 150 km from Amsterdam, Zeeland consists of a complex system of islands, peninsulas and waterways. It also comprises Zeeuwsch-Vlaanderen – a strip of the Flanders mainland between the Western Scheldt (Westerschelde) and Belgium.

- The province of Zeeland lies on the large river delta at the mouth of several rivers, like the Scheldt (Schelde) and Meuse (Maas) rivers. The lighter aqua colors in the image depict the shallow waters of the delta with riverbeds and several sandbanks visible. The brown colored waters indicate a higher sediment content, which contrasts with the darker waters of the North Sea.

- The Port of Rotterdam, the largest seaport in Europe, is visible top-right in the image. Antwerp, in Belgium, is visible in the bottom-right and the quaint city of Bruges can be seen in the bottom-left of the image.

- Zeeland is one of the main agricultural provinces in the Netherlands with one of the largest areas of arable farmland. The patchwork of agricultural fields visible on the islands and mainland show the fields in the various stages of growth or harvest. The area supports cereals, potatoes, beets, cattle and horticulture.

- Large parts of Zeeland, which translates to ‘sea land,’ lie below sea level. The province was the site of a deadly flood in 1953 brought on by a combination of high spring tides and a strong windstorm that severely damaged the low-lying coastal region.

- As a result, the Dutch government began to implement the Delta Project – an elaborate system of dykes, canals, dams and bridges to hold back the North Sea. In this image, the 9 km-long Eastern Scheldt Storm Surge Barrier (Oosterscheldekering) is visible between the islands of Schouwen-Duiveland and Noord-Beveland.

- Since sea-level rise is a key indicator of climate change, accurately monitoring the changing height of the sea surface over decades is essential for climate science, for policy-making and, ultimately, for protecting the lives of those in low-lying regions at risk.

Figure 10: Sentinel-2 image of Zeeland, the westernmost province in the Netherlands. This image, acquired on 30 May 2020, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 10: Sentinel-2 image of Zeeland, the westernmost province in the Netherlands. This image, acquired on 30 May 2020, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

- The Copernicus Sentinel-6 Michael Freilich satellite, set to launch in November, is the first of two identical satellites to be launched sequentially to provide accurate measurements of sea level change.

- Both satellites will reach 66°N and 66°S – a specific orbit occupied by the earlier missions that supplied the reference sea-surface height data over the last three decades. This orbit will allow for 95% of Earth’s ice-free ocean to be mapped every 10 days.

• October 9, 2020: Part of the Laguna San Rafael National Park, located on the Pacific coast of southern Chile, is pictured in this image captured by the Copernicus Sentinel-2 mission. 8)

- Covering an area of around 17000 km2, the park includes the Northern Patagonian Ice Field – a remnant of the Patagonian Ice Sheet that once covered the region. Today, despite the ice field being just a small fraction of its previous size, it is still the second largest continuous mass of ice outside of the polar regions.

- The glacier calves west towards the Pacific Ocean and into the Laguna San Rafael (Lake San Rafael), visible directly to the left of the glacier. The lake was formed due to the retreat of the glacier after the last ice age, and today is a popular tourist destination, with ships sailing to the lagoon to see ice falling from the glacier.

- Directly below lies the San Quintín glacier, the second-largest glacier in the northern ice field. The glacier drains to the west, where hundreds of icebergs can be seen dotted in the lake. Until 1991, the glacier terminated on land, but with its retreat, the basin filled with water and formed the proglacial lake we see today.

- Together with its twin, San Rafael, the glaciers have been receding dramatically under the influence of global warming. Satellite data show that some of the glaciers in Patagonia are retreating faster than anywhere in the world. As temperatures rise and glaciers and ice sheets melt, the water eventually runs into the ocean, causing sea level to rise.

- According to a report last year, glaciers worldwide have lost over 9000 gigatons of ice since 1961 – raising sea level by 27 mm. Rising seas are one of the most distinctive and potentially devastating effects of Earth’s warming climate.

Figure 11: The image depicts the west part of the Northern Patagonian Ice Field which has 28 exit glaciers, with the largest two, San Rafael and San Quintín, visible here. San Rafael Glacier, which can be seen in the upper-right of the image, is one of the most actively calving glaciers in the world and the fastest-moving glacier in Patagonia – ‘flowing’ at a speed of around 7.6 km per year. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)
Figure 11: The image depicts the west part of the Northern Patagonian Ice Field which has 28 exit glaciers, with the largest two, San Rafael and San Quintín, visible here. San Rafael Glacier, which can be seen in the upper-right of the image, is one of the most actively calving glaciers in the world and the fastest-moving glacier in Patagonia – ‘flowing’ at a speed of around 7.6 km per year. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

- For the last 30 years, a series of satellites have collected global sea level measurements to keep an eye on its rising trend. Scheduled for launch in November 2020, the Copernicus Sentinel-6 Michael Freilich satellite will be the next spacecraft to continue the long-term record of sea-surface height measurements started in 1992.

- The satellite will collect the most accurate data on sea level and monitor how it changes over time. The satellite carries a radar altimeter, which works by measuring the time it takes for radar pulses to travel to Earth’s surface and back again to the satellite.

- The spacecraft also carries five instruments to help monitor atmospheric conditions that affect the radar signal and to determine the precise position and velocity of the satellite in orbit. Other instruments measure atmospheric temperature and humidity profiles for weather forecasting and the radiation environment around the satellite.

• October 2, 2020: With a population of over 8 million people distributed over an area of around 780 km2, New York City is the most densely populated major city in the US. Situated on one of the world’s largest natural harbors, New York City is composed of five boroughs. 9)

- New York City’s 900 km of shoreline border the ocean, rivers, inlets and bays, and a harbor that is home to one of the largest ports on the east coast. Like many other cities that border an ocean, New York is at risk of flooding due to rising sea levels.

- Data show that since 1993, the global mean sea level has risen, on average, just over 3 mm every year. Even more worryingly, this rate of rise has increased in recent years.

- Sea level rise flooding of US coastlines is becoming more frequent each year. Rising sea levels are expected to worsen storm flooding in low-lying neighborhoods in coastal areas, and permanently inundate some parts. Retreating shorelines and accelerating erosion will threaten coastal homes and businesses.

- The upcoming Copernicus Sentinel-6 Michael Freilich satellite, set to launch in November from the Vandenberg Air Force Base in California, US, is the first of two identical satellites that will provide observations of sea level change.

- Each Sentinel-6 satellite carries an altimeter that works by measuring the time it takes for radar pulses to travel to Earth’s surface and back again to the satellite. Combined with precise satellite location data, altimetry measurements yield the height of the sea surface.

Figure 12: In this image, captured on 26 August 2019, the island of Manhattan is visible in the center, bounded by the Hudson, East and Harlem rivers. In the middle of Manhattan, Central Park can be seen as a long, green rectangle with a large lake in the middle. The Brooklyn and Queens boroughs can be seen on the right. John F. Kennedy International Airport – the busiest international air passenger gateway into North America – can easily be identifiable in the lower right of the image. The Bronx is visible north of Manhattan, while Staten Island can be seen in the lower left of the image. New Jersey dominates the upper left side of the image. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 12: In this image, captured on 26 August 2019, the island of Manhattan is visible in the center, bounded by the Hudson, East and Harlem rivers. In the middle of Manhattan, Central Park can be seen as a long, green rectangle with a large lake in the middle. The Brooklyn and Queens boroughs can be seen on the right. John F. Kennedy International Airport – the busiest international air passenger gateway into North America – can easily be identifiable in the lower right of the image. The Bronx is visible north of Manhattan, while Staten Island can be seen in the lower left of the image. New Jersey dominates the upper left side of the image. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

• September 25, 2020: The Copernicus Sentinel-2 mission takes us over the Tarawa Atoll in the Republic of Kiribati – a remote Pacific nation threatened by rising seas. 10)

- The Republic of Kiribati is an independent island nation consisting of some 33 atolls near the equator in the central Pacific. The islands are spread over approximately 3.5 million km2 of ocean, but with a total land area of only 800 km2.

- South Tarawa, is made up of a thin, string of islets joined by causeways and is home to more than half of Kiribati’s 100,000 citizens. Bonriki International Airport, serves as the main gateway to the country, and can be seen in the bottom right of the image.

- Kiribati is one of the lowest-lying nations in the world, with many of the country’s atolls and coral islands rising no higher than 2 m above sea level – making them extremely vulnerable to sea level rise. Kiribati has already seen growing damage from storms and flooding. In 1999, two of the nation’s unpopulated islets, Tebua Tarawa and Abanuea, disappeared underwater entirely.

- The Special Report on the Ocean and Cryosphere in a Changing Climate on sea level rise states that the global mean sea level is likely to rise between 0.29 m and 1.1 m by the end of this century. While this may not sound like a lot, small island nations, including Kiribati, will face particularly devastating consequences.

- Small changes in sea-level rise will not only cause flooding, erosion, soil contamination and coral degradation, but will ultimately shrink more of Kiribati’s land area – displacing many of its inhabitants.

- It is vital that over the coming decades, the changing height of Earth’s sea surface continues to be closely monitored. Set to launch in November, the Copernicus Sentinel-6 Michael Freilich satellite will accurately measure changes in global sea level. Mapping up to 95% of Earth’s ice-free ocean every 10 days, it will provide key information on ocean currents, wind speed and wave height for maritime safety.

- This new satellite will assume the role as a reference mission, continuing the ‘gold standard’ record for climate studies started in 1992 – extending the legacy of sea-surface height measurements until at least 2030.

Figure 13: Tarawa Atoll, pictured here, lies approximately halfway between Hawaii and Australia. Tarawa consists of a large lagoon fringed by a V-shaped reef, around 35 km long, and is made up of more than 30 islets. Tarawa, the site of a brutal World War II battle, is divided into North and South Tarawa. This image, acquired on 14 June 2020, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 13: Tarawa Atoll, pictured here, lies approximately halfway between Hawaii and Australia. Tarawa consists of a large lagoon fringed by a V-shaped reef, around 35 km long, and is made up of more than 30 islets. Tarawa, the site of a brutal World War II battle, is divided into North and South Tarawa. This image, acquired on 14 June 2020, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

• September 18, 2020: The Copernicus Sentinel-2 mission takes us over the Vatnajökull ice cap, in southeast Iceland, in this summery image captured on 6 July 2019. 11)

- The most prominent outlet glaciers of Vatnajökull include Dyngjujökull in the north, Breiðamerkurjökull, and Skeiðarárjökull to the south. Vatnajökull conceals some of the most active volcanoes in the country, of which Bárðarbunga is the largest and Grímsvötn the most active. Periodic eruptions of these volcanoes melt the surrounding ice and create large pockets of water, which can often burst the weakened ice causing glacial floods, or ‘jökulhlaup’ in Icelandic.

- During these jökulhlaups, the glacier’s meltwater carries sediments and sands composed of ash to the coast. These outwash plains are called ‘sandurs’ and are commonly found in Iceland. Skeiðarársandur, the large area of black sand, visible south of the Skeiðarárjökull outlet glacier, covers an area of around 1300 sq km and was formed as the glacial rivers in the area washed ash and ice towards the sea.

- In the bottom-right of the image, on the southern side of Vatnajökull, the Jökulsárlón glacial lake, dotted with icebergs, is visible. Jökulsárlón began to form when the Breiðamerkurjökull glacier began retreating from the Atlantic Ocean owing to rising temperatures.

- The lake has grown considerably over time because of the melting of the glacier. It now covers an area of around 18 sq km, and with a maximum depth of around 250 m, it is considered Iceland’s deepest lake. The lake connects with the ocean and is, therefore, composed of both seawater and freshwater – causing its unique color.

Figure 14: Covering an area of around 8400 km2, which is three times the size of Luxembourg, Vatnajökull is not only classified as the biggest glacier in Iceland, but the biggest in Europe. With an average ice thickness of around 900 m, the ice cap has about 30 outlet glaciers – many of which are retreating owing to warming temperatures. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA)
Figure 14: Covering an area of around 8400 km2, which is three times the size of Luxembourg, Vatnajökull is not only classified as the biggest glacier in Iceland, but the biggest in Europe. With an average ice thickness of around 900 m, the ice cap has about 30 outlet glaciers – many of which are retreating owing to warming temperatures. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA)

• September 17, 2020: Researchers from the University of Oslo have applied a technique to extract the detailed flow field of Khumbu icefall in the Nepalese mountains, from a large collection of Copernicus Sentinel-2 data — helping climbers ascend Mount Everest. 12) 13)

- When high altitude mountaineers want to climb Mount Everest from the Nepalese side, they follow a route over and along Khumbu glacier. Part of the glacier, the icefall, runs over a steep cliff making it extremely dangerous. Around Everest basecamp, the glacier of Khumbu starts to receive clean, blueish ice that stems from snow and ice from Western Cwm, the highest glacier in the world.

- However, this ice reaches basecamp by transport through Khumbu icefall. This is a part of the glacier that runs over a steep cliff, and like a river undergoes chaotic and fast flow as it moves downwards. It is this section that climbers need to go through, in order to reach the summit of Mount Everest.

- Khumbu icefall involves a climb of nearly one thousand meters in elevation gain, mostly through a landscape full of crevasses, large pillars and ice walls. Luckily, a path is created through this turbulent environment by trained Nepali workers, called ice doctors.

- Every year before the climbing season starts, they explore routes and lay ropes along them, placing aluminum ladders over the crevasses. The icefall is constantly moving, so throughout the climbing season crevasses will open and close. Consequently, the team of ice doctors stay in Everest basecamp to be able to maintain the route through the icefall and re-secure ladders and ropes.

- Crevasses on a glacier originate when a certain shear strength is reached (when there is a difference in velocity). Thus, in general, the faster ice flow in the middle of a glacier will generate crevasses on its sides, but when the flow over the whole glacier surface is known, these regions can be mapped accordingly.

- The velocity pattern can thus be used to map dangerous areas on a glacier. Use of satellites for this purpose is evident, as these regions are very dangerous to access. Fortunately, it is possible to observe glacier flow from space. But over the fast moving icefall of Khumbu glacier this had not been possible yet, because the glacier ice funnels through a narrow corridor of rock, causing disorderly fracture ice to flow downward and making feature tracking difficult.

Figure 15: In this Copernicus Sentinel-2 image of Mount Everest, the eastern side of the mountain is obstructed by clouds, while the normal route from the Nepalese side is clearly visible. The GPS trajectories of the climbers on this route are plotted in purple (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by the Department of Geosciences, University of Oslo)
Figure 15: In this Copernicus Sentinel-2 image of Mount Everest, the eastern side of the mountain is obstructed by clouds, while the normal route from the Nepalese side is clearly visible. The GPS trajectories of the climbers on this route are plotted in purple (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by the Department of Geosciences, University of Oslo)

- Thanks to a large collection of data from the Sentinel-2 satellites of the European Union's Copernicus Program, the researchers extracted the detailed flow field of Khumbu icefall.

- Copernicus Sentinel-2 multispectral optical imagery at high spatial resolution supports a large range of applications such as precision farming, forestry management, water quality monitoring, and natural disasters management.

- The researchers exploited the high temporal revisit of high-resolution satellite images using a novel image matching technique, ensemble matching, making it possible to generate a high-resolution (30 m) velocity field from high-repeat image sequences despite challenging image conditions.

- Bas Altena, lead author of the study and researcher at University of Oslo found this specific application, and emphasized, "We used multiple optical imagery altogether, taking advantage of the high repeat rate of Copernicus Sentinel-2. This mission with two satellites in orbit can already generate a detailed time-series of glacier velocity for large glaciers, but for smaller and fast flowing sections the current algorithms are challenged. 14)

- "Our approach can provide solutions to these demanding situations, enhancing the capabilities of Copernicus Sentinel-2 towards a reliable and consistent glacier mapping instrument, with operational performance. We hope that our results, be it little, can be of help to the ice doctors for managing the route through the icefall," concluded Dr Altena.

Figure 16: Color-coded icefall velocities at Khumbu Glacier. 3D rendering of the extracted velocity field over Khumbu icefall. The trail to basecamp and through the icefall is indicated by the black line (image credit: Bas Altena, University of Oslo)
Figure 16: Color-coded icefall velocities at Khumbu Glacier. 3D rendering of the extracted velocity field over Khumbu icefall. The trail to basecamp and through the icefall is indicated by the black line (image credit: Bas Altena, University of Oslo)

• September 15, 2020: This series of four Copernicus Sentinel-2 images captured between 29 June and 24 July 2020, shows a segment of the largest ice shelf in the Arctic break up and shatter into a flotilla of small icebergs totalling an area of around 125 km2. 15)

Figure 17: The Nioghalvfjerdsfjorden Ice Shelf, also known as 79N, is the floating front end of the Northeast Greenland ice stream - where it flows off the land and out into the ocean. At its leading edge, the 79N glacier splits in two, with offshoot turning north. It's this offshoot, or tributary, called Spalte Glacier, that has now disintegrated (image credit: ESA, the image series contains modified Copernicus data (2020), processed by ESA)
Figure 17: The Nioghalvfjerdsfjorden Ice Shelf, also known as 79N, is the floating front end of the Northeast Greenland ice stream - where it flows off the land and out into the ocean. At its leading edge, the 79N glacier splits in two, with offshoot turning north. It's this offshoot, or tributary, called Spalte Glacier, that has now disintegrated (image credit: ESA, the image series contains modified Copernicus data (2020), processed by ESA)

- With climate change taking a grip, Spalte Glacier’s final separation from the 79N Ice Shelf comes after some years of progressive disintegration. 79N has retreated by about 23 km since 1990, with significant losses over the last two record-breaking warm summers. Numerous ponds can also be seen on top of the remaining ice shelf, a sign of melting in the recent warm air temperatures. The ocean waters beneath the shelf are also likely to have warmed, increasing the risk of melt from below.

- 79N only recently took claim of being the Arctic’s largest ice shelf after the Petermann glacier, also in northwest Greenland, lost a lot of ice in 2010 and 2012.

• September 4, 2020: The Copernicus Sentinel-2 mission takes us over the Gulf of Kutch – also known as the Gulf of Kachchh – an inlet of the Arabian Sea, along the west coast of India. 16)

- The Gulf of Kutch divides the Kutch and the Kathiawar peninsula regions in the state of Gujarat. Reaching eastward for around 150 km, the gulf varies in width from approximately 15 to 65 km. The area is renowned for extreme daily tides which often cover the lower lying areas – comprising networks of creeks, wetlands and alluvial tidal flats in the interior region.

- Gujarat is the largest salt producing state in India. Some of the white rectangles dotted around the image are salt evaporation ponds which are often found in major salt-producing areas. The arid climate in the region favors the evaporation of water from the salt ponds.

- Just north of the area pictured here, lies the Great Rann of Kutch, a seasonal salt marsh located in the Thar desert. The Rann is considered the largest salt desert in the world.

- The Gulf of Kutch has several ports including Okha (at the entrance of the gulf), Māndvi, Bedi, and Kandla. Kandla, visible on the northern peninsula in the left of the image, is one of the largest ports in India by volume of cargo handled.

- The gulf is rich in marine biodiversity. Part of the southern coast of the Gulf of Kutch was declared Marine Sanctuary and Marine National Park in 1980 and 1982, respectively – the first marine conservatory established in India. The park covers an area of around 270 km2, from Okha in the south (not visible) to Jodiya. There are hundreds of species of coral in the park, as well as algae, sponges and mangroves.

Figure 18: This Sentinel-2 image, acquired on 4 April 2020, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 18: This Sentinel-2 image, acquired on 4 April 2020, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

• August 11, 2020: The island of Mauritius has declared a ‘state of environmental emergency’ after a grounded vessel began leaking tonnes of oil into the Indian Ocean. Satellite images, which show the dark slick spreading in the nearby waters, are being used to monitor the ongoing spill. 17)

- The MV Wakashio vessel, reported to be carrying nearly 4000 tons of oil, ran aground on a coral reef on Mauritius’s southeast coast on 25 July. According to media reports, more than 1000 tons of fuel have leaked from the cracked vessel into the ocean – polluting the nearby coral reefs, as well as the surrounding beaches and lagoons.

- In response to the spill, the International Charter Space and Major Disasters was activated on 8 August. The charter is an international collaboration that gives rescue and aid workers rapid access to satellite data in the event of a disaster. A full report that provides a preliminary assessment of the oil spill, using imagery from the Copernicus Sentinel-2 mission, is available here.

Figure 19: In this image, captured on 11 August by the Copernicus Sentinel-2 mission, the MV Wakashio, visible in the bottom of the image, is stranded close to Pointe d’Esny, an important wetland area. The oil slick can be seen as a thin, black line surrounded by the bright turquoise colors of the Indian Ocean. Oil is visible near the boat, as well as other locations around the lagoon (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 19: In this image, captured on 11 August by the Copernicus Sentinel-2 mission, the MV Wakashio, visible in the bottom of the image, is stranded close to Pointe d’Esny, an important wetland area. The oil slick can be seen as a thin, black line surrounded by the bright turquoise colors of the Indian Ocean. Oil is visible near the boat, as well as other locations around the lagoon (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

• August 5, 2020: Satellite images have revealed that there are nearly 20% more emperor penguin colonies in Antarctica than previously thought. Scientists, at the British Antarctic Survey, have used satellite data from the Copernicus Sentinel-2 mission to track penguin guano, or penguin poo, to monitor the presence of thousands of penguins. 18)

- The findings, published today in Remote Sensing in Ecology and Conservation, reveal 11 new colonies, three of which were previously identified but never confirmed. This discovery takes the global census to 61 colonies around the entire continent. 19)

- Although penguins are too small to show up in satellite images, giant stains on the ice from penguin droppings – known as guano – are easy to identify at the 10 m pixel resolution that the Copernicus Sentinel-2 mission offers.

- These brownish patches have allowed scientists to locate and track penguin populations across the entire continent.

- Peter Fretwell, lead author and geographer at BAS, comments, “This is an exciting discovery. The new satellite images of the Antarctica coastline have enabled us to find these new colonies. And whilst this is good news, the colonies are small and so only take the overall population count up by 5–10%, to just over half a million penguins or around 265 500 – 278 500 breeding pairs.”

- The results, thanks to satellite images from Copernicus Sentinel-2, are an important milestone for monitoring the impact of environmental change on the population of emperor penguins.

- The flightless birds are known to be particularly vulnerable to climate change, as warming ocean waters are melting the sea ice where they live and breed. Following the current projections of climate change, their habitat is likely to decline. The results from the study show that the majority of the newly found colonies are at the margins of the emperors’ breeding range – locations that could be lost as the climate continues to warm.

Figure 20: This map shows the locations of known, re-discovered and newly discovered penguin colonies in Antarctica (image credit: BAS/ESA)
Figure 20: This map shows the locations of known, re-discovered and newly discovered penguin colonies in Antarctica (image credit: BAS/ESA)
Figure 21: A penguin colony near Ninnis Bank was spotted by the Copernicus Sentinel-2 mission on 26 August 2019. Although penguins are too small to show up in satellite images, giant stains on the ice from penguin droppings – known as guano – are easy to identify. These brownish patches have allowed scientists to locate and track penguin populations across the entire continent (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0) IGO)
Figure 21: A penguin colony near Ninnis Bank was spotted by the Copernicus Sentinel-2 mission on 26 August 2019. Although penguins are too small to show up in satellite images, giant stains on the ice from penguin droppings – known as guano – are easy to identify. These brownish patches have allowed scientists to locate and track penguin populations across the entire continent (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0) IGO)
Figure 22: A penguin colony near Yule Bay was captured in this image by the Copernicus Sentinel-2 mission on 23 November 2016. Although penguins are too small to show up in satellite images, giant stains on the ice from penguin droppings – known as guano – are easy to identify. These brownish patches have allowed scientists to locate and track penguin populations across the entire continent (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA)
Figure 22: A penguin colony near Yule Bay was captured in this image by the Copernicus Sentinel-2 mission on 23 November 2016. Although penguins are too small to show up in satellite images, giant stains on the ice from penguin droppings – known as guano – are easy to identify. These brownish patches have allowed scientists to locate and track penguin populations across the entire continent (image credit: ESA, the image contains modified Copernicus Sentinel data (2016), processed by ESA)

- Philip Trathan, Head of Conservation Biology at BAS, has been studying penguins for the last three decades. He says, “Whilst it is good news that we’ve found these new colonies, the breeding sites are all in locations where recent model projections suggest emperors will decline. Birds in these sites are therefore probably the ‘canaries in the coalmine’ – we need to watch these sites carefully as climate change will affect this region.”

- The study found a number of colonies 180 km offshore, situated on sea ice that has formed around icebergs that had grounded in shallow water. These colonies are a surprising new finding in the behavior of this increasingly well-known species.

- Copernicus Sentinel-2 is a two-satellite mission designed specifically to deliver the wealth of data and imagery that are central to the European Commission’s Copernicus program. Satellites, such as the Sentinel-2 mission, provide us with a global coverage, revisiting the same region every few days. The data provide a good understanding of the health and behavior of our planet – and how it is continuously affected by climate change.

Figure 23: A penguin colony near Cape Gates was captured in this image by the Copernicus Sentinel-2 mission on 7 November 2016. Although penguins are too small to show up in satellite images, giant stains on the ice from penguin droppings – known as guano – are easy to identify. These brownish patches have allowed scientists to locate and track penguin populations across the entire continent (image credit: ESA, the images contains modified Copernicus Sentinel data (2016), processed by ESA, CC BY-SA 3.0 IGO)
Figure 23: A penguin colony near Cape Gates was captured in this image by the Copernicus Sentinel-2 mission on 7 November 2016. Although penguins are too small to show up in satellite images, giant stains on the ice from penguin droppings – known as guano – are easy to identify. These brownish patches have allowed scientists to locate and track penguin populations across the entire continent (image credit: ESA, the images contains modified Copernicus Sentinel data (2016), processed by ESA, CC BY-SA 3.0 IGO)
Figure 24: Emperor penguins live in Antarctica, which is not only remote and inaccessible, but temperatures can drop to –50ºC. Studying penguin colonies is therefore extremely difficult. Nevertheless, over the last 10 years, scientists at the British Antarctic Survey (BAS) have been able to search for new emperor penguin colonies using satellite imagery (image credit: BAS)
Figure 24: Emperor penguins live in Antarctica, which is not only remote and inaccessible, but temperatures can drop to –50ºC. Studying penguin colonies is therefore extremely difficult. Nevertheless, over the last 10 years, scientists at the British Antarctic Survey (BAS) have been able to search for new emperor penguin colonies using satellite imagery (image credit: BAS)

• July 31, 2020: The Flinders mountains in South Australia are a classic example of a folded mountain range, which are formed when two or more of Earth’s tectonic plates collide – folding and pushing layers of land into mountain ranges. 20)

- The formation of the Flinders Range began to form around 800 million years ago, when an ancient sea deposited sediments into the Adelaide Geosyncline basin. Millions of years later, the sediments were folded into mountains, which have since eroded. However, the folded rocks remained and were uplifted to create the landscape as we see it today.

- The Flinders Ranges stretches for over 400 km across the Australian outback – from Port Pirie to Lake Callabonna. The first humans to inhabit the Flinders Ranges were the Adnyamathanha people, who have inhabited the range for tens of thousands of years.

- The area pictured here shows the Vulkathunha-Gammon Ranges National Park in the Northern Flinders Ranges. The rugged park’s main attractions include deep gorges, chasms and an impressive wilderness. Numerous creeks appear like veins across the entire image, while the straight, white lines visible in the bottom right are dirt roads.

- Slightly west of the image pictured here lies the Ediacara Hills, where some of the oldest fossil evidence of animal life was discovered.

- The flora of the Flinders Ranges are largely species who have adapted to a semi-arid environment, including sugar gum tree, cypress-pine and mallee. Since the eradication of dingoes in the area, the number of red kangaroos, western grey kangaroos and wallaroos in the mountains has increased.

Figure 25: The many colorful curves and folds of the Flinders Ranges – the largest mountain range in South Australia – are featured in this false-color image captured by the Copernicus Sentinel-2 mission. This image, also featured on the Earth from Space video program, was captured on 31 December 2019 by the Copernicus Sentinel-2 mission – a two-satellite mission to supply the coverage and data delivery needed for Europe’s Copernicus program. The image was processed by selecting spectral bands that can be used for classifying geological features (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 25: The many colorful curves and folds of the Flinders Ranges – the largest mountain range in South Australia – are featured in this false-color image captured by the Copernicus Sentinel-2 mission. This image, also featured on the Earth from Space video program, was captured on 31 December 2019 by the Copernicus Sentinel-2 mission – a two-satellite mission to supply the coverage and data delivery needed for Europe’s Copernicus program. The image was processed by selecting spectral bands that can be used for classifying geological features (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

• July 17, 2020: The Great Salt Lake is the largest salt water lake in the western hemisphere, and one of the most saline inland bodies of water in the world. The Great Salt Lake is the largest of the lake remnants of prehistoric freshwater Lake Bonneville, that once covered much of western Utah. 21)

- The lake is fed by the Bear, Weber and Jordan rivers which, together, deposit around 1 million tons of minerals in the lake each year. As the lake is endorheic, meaning without an outlet, the water evaporates which leads to a very high salt concentration. It greatly fluctuates in size, depending on the rates of evaporation and the flow of the rivers that feed it.

- The distinct color differences in the lake are caused by the Lucin Cutoff, an east-west causeway built to create a shorter route. The railroad line is visible as a sharp line cutting across the top part of the lake. This acts as a dam, preventing the waters to mix, leading to the north basin having a much higher salinity than the southern, freshwater side of the lake.

- As the lake’s main tributaries enter from the south, the water level of the southern section is slightly higher than that of the northern part. Several small islands, the largest of which are Antelope and Fremont, lie in the southern part of the lake.

- The lake’s varying shoreline consists of beaches, marshes and mudflats. The bright, turquoise colors visible on both sides of the lake are evaporation ponds, from which various salts are collected in commercial operations. Although it is commonly referred to as America’s Dead Sea, the lake is nevertheless an important habitat for millions of native and migratory birds. It is also home to several types of algae, brine shrimp and brine flies.

- The lake’s basin is defined by the foothills of the snow-capped Wasatch Range, to the east, and by the Great Salt Lake Desert, a remnant of the bed of Lake Bonneville, to the west. This part of the desert is known as the Bonneville Salt Flats and is used as an automobile raceway, as the flat and smooth salt beds make the area ideally suited for speed trials. Utah’s capital, Salt Lake City, is visible in the bottom right of the image.

Figure 26: Utah’s Great Salt Lake and its surroundings are featured in this false-color image captured by the Copernicus Sentinel-2 mission. This image, which was captured on 17 March 2019, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 26: Utah’s Great Salt Lake and its surroundings are featured in this false-color image captured by the Copernicus Sentinel-2 mission. This image, which was captured on 17 March 2019, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

- This image was processed in a way that included the near-infrared channel, which makes vegetation appear in red, while rocks and bare soil appear in brown. Copernicus Sentinel-2 is a two-satellite mission. Each satellite carries a high-resolution camera that images Earth’s surface in 13 spectral bands. The mission’s frequent revisits over the same area and high spatial resolution allow changes in inland water bodies to be closely monitored.

• July 3, 2020: A popular tourist and diving destination with white sandy beaches, the Republic of Maldives is located in the Indian Ocean, around 700 km southwest of Sri Lanka. This island nation consists of a chain of around 1200 small coral islands that are grouped into clusters of atolls – scattered across 90,000 km2 of ocean. 22)

- An atoll is a circular or oval-shaped reef structure with a lagoon in the center. These structures typically form around a volcanic island that has subsided while the coral grows upwards. The Maldives actually rests on top of an ancient volcanic mountain range.

- One of the world’s lowest-lying countries, more than 80% of the Maldives’ land is less than one meter above average sea level. This extremely low elevation makes the country, and its inhabitants, particularly vulnerable to sea-level rise.

- Satellite data has shown that the global ocean has risen, on average, 3 mm a year over the last 25 years. But more alarmingly, satellite data shows the rate of the rise has accelerated over the last few years, and has been rising at around 5 mm per year. Warming ocean waters, melting glaciers and diminishing ice sheets is making rising sea levels a real threat for low-lying islands such as the Maldives.

- The upcoming Copernicus Sentinel-6 Michael Freilich satellite, set to launch in November 2020, will map up to 95% of Earth’s oceans every 10 days. The satellite carries a new generation radar altimeter that will observe annual changes in mean sea level with millimeter precision, together with measurements of surface wind speed, sea state and geostrophic ocean currents. This new satellite will assume the role as a reference mission to provide critical data for the long-term record of sea-surface height measurements.

- These measurements are not only essential for monitoring our rising seas, but also for climate prediction, sustainable ocean-resource management, coastal management and environmental protection.

- ESA is jointly developing the mission with its partners NASA, the European Commission, EUMETSAT and NOAA, with support from CNES.

Figure 27: In this image, the Ari Atoll in the west of the archipelago is featured. The Ari Atoll is one of the largest atolls in the Maldives, and is around 90 km long and 30 km wide. The turquoise colors in the image depict clear, shallow waters which contrasts with the dark colored waters of the deep Indian Ocean. Several clouds can be seen at the bottom of the image. This image of Sentinel-2, which was captured on 12 April 2019, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 27: In this image, the Ari Atoll in the west of the archipelago is featured. The Ari Atoll is one of the largest atolls in the Maldives, and is around 90 km long and 30 km wide. The turquoise colors in the image depict clear, shallow waters which contrasts with the dark colored waters of the deep Indian Ocean. Several clouds can be seen at the bottom of the image. This image of Sentinel-2, which was captured on 12 April 2019, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

• June 30, 2020: On today's Asteroid Day, the Copernicus Sentinel-2 mission takes us over the Roter Kamm impact crater in Namibia. The circular shape of the crater rim can be seen in the left of the image, just below the center. 23)

- The Roter Kamm impact crater is located in the Tsau llKhaeb National Park, also known as the Sperrgebiet, a diamond mining area in the Namib Desert, in southwest Namibia. According to geologists, the crater was formed by a meteorite around the size of a large vehicle that collided with Earth approximately 5 million years ago.

- The crater has a diameter of 2.5 km and is around 130 m deep. It is clearly visible in the midst of the rust-red dunes, with its rims rising some 40 to 90 m above the surrounding plain. Its floors are covered by sand deposits at least 100 m thick.

- Meteorites and asteroids have influenced Earth’s development, as seen by the millions of impact craters scarring our world. Each year on 30 June, the worldwide UN-sanctioned Asteroid Day takes place to raise awareness about asteroids and what can be done to protect Earth from possible impact. The day falls on the anniversary of the Tunguska event that took place on 30 June 1908 in Siberia, the most harmful known asteroid related event in recent history.

- Over the last two decades, ESA has been performing detection and analysis of asteroids whose orbits bring them close to Earth, known as near-Earth objects (NEOs). There are an estimated 40,000,000 NEOs out there larger than 10 m – the threshold above which damage on the ground could happen.

- ESA is also developing the Hera mission, which will be the first to test the effectiveness of asteroid deflection, as it flies to the Didymos binary system that will soon be impacted by NASA’s DART. If an asteroid is detected that is on collision course with Earth, these missions mean we will be more prepared to act.

Figure 28: Image of the Roter Kamm impact crater in Namibia, acquired with Sentinel-2. The circular shape of the crater rim can be seen in the left of the image, just below the center (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 28: Image of the Roter Kamm impact crater in Namibia, acquired with Sentinel-2. The circular shape of the crater rim can be seen in the left of the image, just below the center (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

• June 26, 2020: The Andes mountains, in southern Peru, are featured in this false-color image captured by the Copernicus Sentinel-2 mission. This image was processed in a way that makes vegetation appear blue, while irrigated vegetation and agriculture is visible in bright blue. 24)

- The Andes are considered the longest continental mountain range in the world. They extend around 7000 km through seven South American countries – from Venezuela in the north all the way to Chile in the south.

- The mountain range is the result of the Nazca and Antarctic tectonic plates moving under the South American plate in a geological process called subduction. Wind and water erosion are also a major factor for the shaping of the landscape.

- The small town of Puquio, with an elevation of over 3000 m, can be seen in the top right of the image – surrounded by vegetation. Directly to the left of Puquio, lies the Pampa Galeras National Reserve. This reserve protects the habitat of the threatened vicuña, a wild camelid which live in the high alpine areas of the Andes.

- The clouds in the bottom-left of the image are an example of marine stratocumulus. These low-lying clouds are caused by cooler waters in the Pacific Ocean being pulled up to the surface, cooling the air above it, and causing water vapor to condense into water droplets and, eventually, clouds. Marine stratocumulus clouds often develop off of Peru, with prevailing winds pushing the clouds inland. As the clouds are low, they are easily blocked by coastal mountains and hills, such as the Andes.

- Under the small cloud in the upper left of the image, lies the city of Nazca. Northwest of Nazca, the famous site of the Nazca lines can be found (not visible). The Nazca lines are a group of geoglyphs, or drawings, etched into the surface of the arid plain. The figures depict various plants, animals and many other shapes and extend over an area of around 500 km2.

Figure 29: In this image of Sentinel-2, captured on 16 June 2020, parts of the Ica, Ayacucho and Arequipa Regions in Peru are featured. Streams of water flowing from the high altitudes, and through the valleys, provide water for irrigation to the nearby agricultural fields. Some of these agricultural plots can be seen in bright blue in the image. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 29: In this image of Sentinel-2, captured on 16 June 2020, parts of the Ica, Ayacucho and Arequipa Regions in Peru are featured. Streams of water flowing from the high altitudes, and through the valleys, provide water for irrigation to the nearby agricultural fields. Some of these agricultural plots can be seen in bright blue in the image. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

• June 19, 2020: The Copernicus Sentinel-2 mission takes us over part of the Great Rift Valley, Kenya. This valley is part of the Gregory Rift, an eastern branch of the East African Rift, which is being caused by the separation of the Somali plate from the Nubian plate. Major tectonic and volcanic activity have shaped the distinctive landscape of the Great Rift Valley which runs through Kenya from north to south. 25)

- The dramatic landscape contains the Cherangani Hills and forests to the west, a chain of volcanoes, of which some are still active, escarpments and jewel-like lakes.

- Lake Baringo, one of the most northern of the Kenyan Rift Valley lakes, is visible at the top of the image. With a surface area of 130 km2 and an elevation of around 970 m, the lake has an average depth of around 5 m and it is one of the two freshwater lakes in the Rift Valley – the other being Lake Naivasha (not visible).

- This lake has no visible outlet; its waters are thought to seep into lavas at its northern end – where the rocky shore contrasts with the alluvial flat on its southern border.

- Baringo is dotted with several small islands. Its largest is visible in the center of the lake and is called Ol Kokwe (also known as the Meeting Place). It is an extinct volcano with several hot springs. A great variety of birds inhabit Lake Baringo, which is also home to hippopotamuses and crocodiles.

- South of Lake Baringo lies Lake Bogoria – a saline, alkaline lake. The long and narrow lake has an area of around 30 km2 and is around 10 m deep. Lake Bogoria provides refuge for the lesser flamingo, with a population of around 1 to 1.5 million, and also supports more than 300 waterbird species. The lake is a designated Ramsar site and is also part of the Lake Bogoria National Reserve.

- The lake is famous for geysers and hot springs along the bank of the lake – some of which can erupt up to 5 m high. The lake’s stable water level makes it highly important during times of drought.

Figure 30: This Sentinel-2 image of the Great Rift Valley in Kenya was captured on 13 March 2019, it is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 30: This Sentinel-2 image of the Great Rift Valley in Kenya was captured on 13 March 2019, it is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

• June 12, 2020: The Copernicus Sentinel-2 mission takes us over Barcelona – the second largest city in Spain. 26)

- On the northeast coast of the Iberian Peninsula, Barcelona occupies a low plateau along the Mediterranean coastal plain. The city and its red roofs contrast with the forested hills and the sea that surround it.

- The famous Avinguda Diagonal avenue can be seen in the right of the image. The road is one of Barcelona’s broadest avenues and cuts the city diagonally in two, hence its name. The circular Plaça de les Glòries Catalanes was meant to be the city center in the original urban plan, but nowadays is used largely as a roundabout.

- Dominating the left side of the image are the Garraf Massif mountains, their cliffs reaching the Mediterranean coast. Its highest point on the coastal side is La Morella – almost 600 m above sea level.

- The Llobregat River can be seen entering the image in the top left. The river rises in the eastern Pyrenees and flows southeast before emptying into the Mediterranean Sea. Before reaching the sea, the river forms a small delta, which used to provide a large extension of fertile land but is now largely urbanized. Barcelona-El Prat airport can be seen to the left of the river. Along the coast, the port of Barcelona, one of Europe’s top ten largest container ports, is visible.

- Barcelona is home to the Universitat Politècnica de Catalunya – the largest engineering university in Catalonia. In 2017, the university won ESA’s Small Satellite Challenge and the top prize at the Copernicus Masters competition with its Federated Satellite Systems (FSSCat) project. The FSSCat mission consists of two small CubeSat satellites, each about the size of a shoebox, and will use state-of-the-art dual microwave and multispectral optical sensors.

- Φ-sat-1 – an enhancement of FSSCat carried on one of the two CubeSats – is set to launch soon from Europe’s spaceport in Kourou. It will be the first experiment to demonstrate how artificial intelligence can be used for Earth observation. Φ-sat-1 will have the ability to filter out less than perfect images so that only usable data are returned to Earth. This will allow for the efficient handling of data so that users will have access to timely information – ultimately benefiting society at large.

Figure 31: This image of Sentinel-2, which was captured on 16 March 2017, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)
Figure 31: This image of Sentinel-2, which was captured on 16 March 2017, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO)

- Φ-sat-1 will acquire an enormous number of images that will allow scientists to detect urban heat islands, monitor changes in vegetation and water quality, as well as carry out experiments on the role of evapotranspiration in climate change.

• June 9, 2020: The coronavirus pandemic has brought the tourism and travel industry to a near-standstill, with nationwide lockdowns significantly impacting the aviation and maritime industry worldwide. Satellite images, captured by the Copernicus Sentinel-2 mission, show parked aircraft and anchored vessels in times of COVID-19. 27)

- Global aviation is facing its battle to survive, with most flights grounded since March owing to travel restrictions in place to contain the coronavirus pandemic. According to aviation industry researcher Cirium, the number of passenger jets in service is the lowest it has been in 26 years.

- Managing large-scale storage poses a challenge for the industry, as airlines hunt for space on the ground for storage facilities. Taxiways, hangers and even runways at major airports around the world are being transformed into parking spaces for planes. These images captured by the Copernicus Sentinel-2 mission show the numerous parked planes on runways – even in remote airports such as Alice Springs in Australia.

- Airport storage facilities are sometimes referred to as ‘boneyards’ owing to airlines sending retired aircraft to the desert. These boneyards are often located in dry and arid places as the climate means planes can be preserved in excellent condition before returning to service or being reused.

- Teruel Airport in the Aragon province in Spain was built with this purpose in mind. According to a recent report in Reuters, the airport is hosting around 100 aircraft and the number of planes arriving per week to be parked in the airport has doubled since the start of the global pandemic.

- Another sector heavily affected by the pandemic is the cruise ship industry. Major cruise lines have suspended operations to mitigate the spread of COVID-19. Cruise ship operators around the world have struggled to find open ports to disembark, while some were forced to stay anchored at sea for an extended period of time.

Figure 32: Parked planes. These images show parked planes at various airports around the world during the coronavirus pandemic. The Copernicus Sentinel-2 images were captured in May 2020 (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 32: Parked planes. These images show parked planes at various airports around the world during the coronavirus pandemic. The Copernicus Sentinel-2 images were captured in May 2020 (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 33: Manila Bay, in the Philippines, has been transformed into a parking lot for cruise ships. In this animation, around 20 vessels can be seen anchored off the coast of Manila Bay. Captured by the Copernicus Sentinel-2 mission, this animation contains a sequence of images captured on 22 April, 2 May and 22 May 2020 (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 33: Manila Bay, in the Philippines, has been transformed into a parking lot for cruise ships. In this animation, around 20 vessels can be seen anchored off the coast of Manila Bay. Captured by the Copernicus Sentinel-2 mission, this animation contains a sequence of images captured on 22 April, 2 May and 22 May 2020 (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

- According to Reuters, the cruise ships have been asked to wait in the Manila Bay anchorage area with hundreds of seafarers remaining on board awaiting clearance in order to return home. The famous Diamond Princess and Ruby Princess vessels are said to be among the fleet.

- In order to learn more about space applications and the socio-economic impact of COVID-19, ESA and the European Commission recently unveiled the new ‘Rapid Action Coronavirus Earth observation’ dashboard, also known as RACE. The platform uses Earth observation satellite data to measure the impact of the coronavirus lockdown worldwide, and monitor post-lockdown recovery.

• June 5, 2020: A state of emergency has been declared after some 20,000 tons of diesel oil leaked into a river within the Arctic Circle. Images captured by the Copernicus Sentinel-2 mission show the extent of the spill. 28)

- According to media reports, the spillage occurred when a fuel tank at a power plant near Norilsk, operated by a subsidiary of Norilsk Nickel, collapsed on Friday 29 May. The leaked oil is reported to have drifted around 12 km from the accident site. In this animation, diesel oil is visible in the Ambarnaya River on both 31 May and 1 June – easily identifiable in crimson red.

Figure 34: The images captured by the Copernicus Sentinel-2 mission show the extent of the Arctic Circle oil spill (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 34: The images captured by the Copernicus Sentinel-2 mission show the extent of the Arctic Circle oil spill (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

- The Ambarnaya River flows into Lake Pyasino – a major body of water and source of the Pysaina River. Copernicus Sentinel-2 is a two-satellite mission to supply the coverage and data delivery needed for Europe’s Copernicus program. The mission’s frequent revisits over the same area and high spatial resolution allow changes in water bodies to be closely monitored.

• June 5, 2020: This image, captured by the Copernicus Sentinel-2 mission, takes us over part of Channel Country – a pastoral region located mostly in southwest Queensland, Australia. The name derives from the many intertwined rivers and channels that cut across the 155,000 km2 region during times of high water. 29)

- The landscape is mostly arid and includes flat alluvial terrain that is drained by the Georgina, Thomson, Diamantina and Barcoo rivers. This desert region usually becomes lush with greenery after periods of flooding, and the land is used for cattle grazing.

- In late March 2019, tropical cyclone Trevor hit northwest Queensland and produced heavy rain as it moved inland. According to the Australian Government Bureau of Meteorology, major flood levels were recorded across the Channel Country catchments.

Figure 35: This false-color image, captured shortly after the cyclone hit, on 5 April 2019, was processed in a way that included the near-infrared channel – which makes vegetation appear bright red. Mud and sediments in the waters of the Georgina and Diamantina Rivers and the other smaller channels can be seen in cyan. Desert, bare soil and rocks are visible in shades of green. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 35: This false-color image, captured shortly after the cyclone hit, on 5 April 2019, was processed in a way that included the near-infrared channel – which makes vegetation appear bright red. Mud and sediments in the waters of the Georgina and Diamantina Rivers and the other smaller channels can be seen in cyan. Desert, bare soil and rocks are visible in shades of green. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

- Flooded waters then usually empty into the Lake Eyre Basin (not visible), one of the driest areas in Australia.

- In the bottom left of the image, the Lake Machattie area is visible. Covering an area of around 900 km2, the area comprises three freshwater lakes: Lake Machattie, Lake Mipia, and Lake Koolivoo, and two nearby floodplains. The region is a designated Important Bird and Biodiversity Area by Birdlife International as it has supported over 300,000 water birds.

- The 5 June marks World Environment Day, which aims to raise awareness and take action on urgent environmental issues. World Environment Day 2020 calls for urgent action to protect biodiversity.

• May 29, 2020: The Copernicus Sentinel-2 mission takes us over part of Abu Dhabi – one of the seven emirates that constitute the United Arab Emirates (UAE). 30)

- Covering an area of approximately 67,000 km2, the Emirate of Abu Dhabi is the largest emirate in the UAE – accounting for around 87% of the total land area of the federation. Abu Dhabi has around 200 islands lying along its 700 km long coastline.

Figure 36: The city of Abu Dhabi, after which the emirate is named, is located on an island in the Persian Gulf and can be seen slightly below the center of the image. Abu Dhabi is the capital and the second-most populous city of the UAE – after Dubai. The city is directly connected to the mainland by three bridges: Maqta, Mussafah and Sheikh Zayed. This image, captured on 27 January 2019, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 36: The city of Abu Dhabi, after which the emirate is named, is located on an island in the Persian Gulf and can be seen slightly below the center of the image. Abu Dhabi is the capital and the second-most populous city of the UAE – after Dubai. The city is directly connected to the mainland by three bridges: Maqta, Mussafah and Sheikh Zayed. This image, captured on 27 January 2019, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

- Just east of the city lies the Mangrove National Park, visible as a dark green patch of land. The protected area is around 20 km2 and includes mangrove forests, salt marshes, mudflats and is home to more than 60 bird species.

- The waters surrounding Abu Dhabi are said to hold the world’s largest population of Indo-Pacific humpback dolphins. The lighter aqua colors are shallow waters, which contrast with the dark colored waters of the Gulf.

- The iconic red roof of Ferrari World can be seen in the center-right of the image. The Ferrari-themed park is located on Yas Island and is said to be the world’s largest indoor theme park. Abu Dhabi International Airport is visible southeast of the park.

• May 28, 2020: River ice jams are a prime source of flood risk in cold regions. In April 2020, an ice jam developed on the Athabasca River in Canada – leading to the flooding of Fort McMurray. Satellite data provided by the European Union’s Copernicus Sentinels, are lending a hand to monitor river ice conditions. 31)

- Ice jams can occur at any time in winter, but the ones that take place during spring’s river ice breakup tend to be the most common and destructive. The flooding in Fort McMurray displaced some 13,000 people and damaged 1200 properties.

- The independent Dutch institute for applied research, Deltares, are working together with the River Ice Team of Alberta Environment and Parks and, with scientific support from Natural Resources Canada, to set-up operational access to near real-time satellite data, and develop and implement methods to detect and classify river ice.

- Read full story: Copernicus Sentinels help classify river ice.

Figure 37: This false-color image was captured by the Copernicus Sentinel-2 mission and shows the extent of the flooding. This composite image contains images acquired on 28 April (majority of image, bottom right) and 29 April 2020 (top left). White lines in the image indicate the normal extent of the river channel (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by Deltares)
Figure 37: This false-color image was captured by the Copernicus Sentinel-2 mission and shows the extent of the flooding. This composite image contains images acquired on 28 April (majority of image, bottom right) and 29 April 2020 (top left). White lines in the image indicate the normal extent of the river channel (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by Deltares)

• May 22, 2020: The Copernicus Sentinel-2 mission takes us over part of Chile's Atacama Desert, which is bound on the west by the Pacific and on the east by the Andes. The Atacama is considered one of the driest places on Earth – there are some parts of the desert where rainfall has never been recorded. 32)

Figure 38: In this image, captured on 26 June 2019, a specific area in the Tarapacá Region, in northern Chile, is featured – where some of the largest caliche deposits can be found. It is here where nitrates, lithium, potassium and iodine are mined. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 38: In this image, captured on 26 June 2019, a specific area in the Tarapacá Region, in northern Chile, is featured – where some of the largest caliche deposits can be found. It is here where nitrates, lithium, potassium and iodine are mined. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

- Iodine, for example, is extracted in a process called heap leaching – which is widely used in modern large-scale mining operations. Leach piles are visible as rectangular shapes dotted around the image, although the exact reason for the different shades of color is uncertain. Some leach piles could appear lighter or darker owing to the varying water content or soil type concentration.

- The geometric shapes in the right are large evaporation ponds. Brine is pumped to the surface through a network of wells into the shallow ponds. The dry and windy climate enhances the evaporation of the water and leaves concentrated salts behind for the extraction of lithium – which is used in the manufacturing of batteries.

- The bright, turquoise colors of the evaporation ponds are in stark contrast with the surrounding desert landscape – making them easily identifiable from space. Distinctive black lines visible in the image are roads that connect to the various construction sites.

- Copernicus Sentinel-2 is a two-satellite mission to supply the coverage and data delivery needed for Europe’s Copernicus program. This false-color image was processed by selecting spectral bands that can be used for classifying geological features.

• May 15, 2020: The Copernicus Sentinel-2 mission takes us over San Francisco Bay in the US state of California. 33)

- San Francisco Bay, almost 100 km in length (Figure 39), is a shallow estuary surrounded by the San Francisco Bay Area – an extensive metropolitan region that is dominated by large cities such as San Francisco, Oakland and San Jose. The densely populated urban areas around the bay contrast strongly with the surrounding green forest and park areas.

- The Golden Gate Bridge, around 2.7 km long, is visible crossing the opening of the bay into the Pacific Ocean between Marin County and the city of San Francisco – which can be seen at the tip of the southern peninsula in the center of the image. Treasure, Angel and Alcatraz islands can be seen sticking out of the waters of the bay, with several bridges connecting its east and west shores. Several boats are also visible.

- The bright green and yellow colors in the bottom right of the image are salt ponds and are part of the Don Edwards National Wildlife Refuge. Covering an area of around 120 km2, the refuge contains salt marsh, mudflat and vernal pool habitats for millions of migratory birds and endangered species.

Figure 39: In the upper right of the image, the delta of the Sacramento and San Joaquin rivers is visible – with the brown, sediment-filled water flowing down into San Pablo Bay. Here, the murky waters mix before flowing into the larger bay area, which is connected to the Pacific Ocean via the Golden Gate strait. A large sediment plume can be seen travelling westward into the Pacific in the left of the image. This image, captured on 25 January 2019, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 39: In the upper right of the image, the delta of the Sacramento and San Joaquin rivers is visible – with the brown, sediment-filled water flowing down into San Pablo Bay. Here, the murky waters mix before flowing into the larger bay area, which is connected to the Pacific Ocean via the Golden Gate strait. A large sediment plume can be seen travelling westward into the Pacific in the left of the image. This image, captured on 25 January 2019, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

• May 01, 2020: This week's image of the Earth from Space Program explores the Southern Ukraine. Owing to Ukraine’s climate and arable land, agriculture plays a large role in the country’s economy. In this image, captured on 26 June 2019, a patchwork of agricultural fields dominate the landscape. Ukraine’s main grain crops are winter wheat, spring barley and corn. 34)

Figure 40: Southern Ukraine is featured in this false-color image captured by the Copernicus Sentinel-2 mission. This image was processed in a way that included the near-infrared channel, which makes vegetation appear bright red. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 40: Southern Ukraine is featured in this false-color image captured by the Copernicus Sentinel-2 mission. This image was processed in a way that included the near-infrared channel, which makes vegetation appear bright red. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

- Circular shapes in the image are an example of center-pivot irrigation systems, where equipment rotates around a central pivot and crops are watered with sprinklers.

- The bright red contrasts with the black waters of the Kakhovka Reservoir on the Dnieper River, visible at the top of the image. Canals are visible as thin, black lines cutting through the agricultural fields, and are mostly used for water supply and irrigation of the surrounding farmlands.

- In the far left of the image, the oval-shaped Oleshky Sands is visible. Covering an area of around 160 km2, this large expanse of sand is considered a small desert in the Ukraine. The grassy plains that used to cover the area are said to have died off hundreds of years ago owing to sheep farming – initiating the area’s desertification.

- In the bottom-right of the image, a colorful network of salty lagoons lie along the northern border of the Crimean Peninsula. These shallow, marshy inlets are known as Syvash (also Sivash or Sivaš). During summer months, the warmer marsh waters leave unpleasant odors – earning the region the nicknames ‘Putrid Sea’ and ‘Rotten Sea.’

• April 24, 2020: The Copernicus Sentinel-2 mission takes us over part of the Namib Desert in western Namibia. At 55 million years old, Namib is considered the oldest desert on Earth. 35)

- The Namib-Naukluft National Park's main attraction is Sossusvlei – a large salt and clay pan visible in the center of the image (Figure 41). The bright white floors of the pan contrasts with the rust-red dunes that surround it.

- Sossusvlei acts as an endorheic basin for the Tsauchab River – an ephemeral river flowing from the east. Owing to the dry conditions in the Namib Desert, the river rarely flows this far and the pan usually remains dry most years. In the past, water from the Tsauchab has reached the Atlantic coast a further 60 km away.

- These dunes contrast with the saffron-colored dunes visible in the Namib Sand Sea, just south of Soussusvlei. The sand sea consists of two dune seas, one on top of another. The foundation of the ancient sand sea has existed for at least 21 million years, while the younger sand on top has existed for around 5 million years. The dunes here are formed by the transportation of materials from thousands of kilometers away, carried by river, ocean current and wind.

- The Namib Sand Sea is the only coastal desert in the world to contain large dune fields influenced by fog – the primary source of water for the Namib Sand Sea. Haze is visible in the bottom left of the image, the last leftovers of fog coming from the Atlantic Ocean.

Figure 41: In this image, captured on 27 October 2019, a large portion of the Namib-Naukluft National Park is visible. The park covers an area of almost 50,000 km2 and encompasses part of the Namib Desert and the Naukluft Mountains to the east. Straight, white lines visible in the right of the image are roads that connect the Namib-Naukluft National Park with other parts of Namibia. This image is featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 41: In this image, captured on 27 October 2019, a large portion of the Namib-Naukluft National Park is visible. The park covers an area of almost 50,000 km2 and encompasses part of the Namib Desert and the Naukluft Mountains to the east. Straight, white lines visible in the right of the image are roads that connect the Namib-Naukluft National Park with other parts of Namibia. This image is featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

• April 23, 2020: While the COVID-19 virus pandemic is forcing everybody to stay at home, we bring you these beautiful views from space of the Dutch tulip fields coming into bloom. Captured by the Copernicus Sentinel-2 mission on 5 April, 10 April, 15 April and 20 April 2020, this sequence of images shows how the fields change from browns and greens to an array of vibrant colors. Lasting just a few weeks, the beauty of these colors normally attracts millions of visitors from all over the world. Sadly, this is not the case this year, as the COVID-19 crisis means that people cannot travel and even locals are actively discouraged from visiting the fields. 36)

Figure 42: The image features the area around the small town Lisse, home to the world-famous showcase for floriculture the Keukenhof flower park. The area, which lies close to the coast in the Dutch province of South Holland, is famed for producing bulbs which are exported all over the globe. The fields are only in bloom for a few short weeks. When the tulips reach full bloom, the farmers quickly remove their colorful heads to divert the flowers' energy back to the bulbs to help keep them strong (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 42: The image features the area around the small town Lisse, home to the world-famous showcase for floriculture the Keukenhof flower park. The area, which lies close to the coast in the Dutch province of South Holland, is famed for producing bulbs which are exported all over the globe. The fields are only in bloom for a few short weeks. When the tulips reach full bloom, the farmers quickly remove their colorful heads to divert the flowers' energy back to the bulbs to help keep them strong (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

- Keukenhof will not open this year: On 23 March, the Dutch government tightened up the measures to prevent the spread of the corona virus. All meetings and events will be canceled until June 1, even with less than 100 visitors. This means that Keukenhof Flower Exhibition cannot open in 2020.

• April 17, 2020: The Copernicus Sentinel-2 mission takes us over Montevideo – the capital and largest city of Uruguay. 37)

- With an area of around 175,000 km2, Uruguay is geographically the second smallest nation in South America. Around half of the country’s total population lives in the Montevideo metropolitan area – visible as a grey, gridded expanse in this week’s image.

- Montevideo is the southernmost capital city in the Americas and is known for its beaches – visible east of the city. The Rambla of Montevideo, the city’s famous promenade, stretches for 27 km along the coast – making it one of the longest esplanades in the world.

- Montevideo lies on the northern shore of the River Plate, known as Río de la Plata in Spanish, an estuary formed by the confluence of the Paraná and Uruguay rivers. The Santa Lucia River, visible west of Montevideo, forms the natural border between Montevideo and the San José Department. The Santa Lucía River flows for around 230 km before forming a small delta and emptying into the River Plate. It is here that the river’s silt-laden waters, visible in dark brown, mix with the murky colored waters of the River Plate.

- Water from these two rivers then flows eastwards and mixes with the clearer, turquoise-colored waters of the South Atlantic Ocean – visible in the far-right of the image.

Figure 43: This image was captured on 18 October 2019 by the Copernicus Sentinel-2 mission – a two-satellite mission to supply the coverage and data delivery needed for Europe’s Copernicus program. The mission’s frequent revisits over the same area and high spatial resolution allow changes in land cover and water bodies to be closely monitored. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 43: This image was captured on 18 October 2019 by the Copernicus Sentinel-2 mission – a two-satellite mission to supply the coverage and data delivery needed for Europe’s Copernicus program. The mission’s frequent revisits over the same area and high spatial resolution allow changes in land cover and water bodies to be closely monitored. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

• April 16, 2020: With an outbreak of wildfires recently threatening the closed Chernobyl nuclear power plant in the Ukraine, the Copernicus Emergency Mapping Service has been activated and the Copernicus Sentinel-2 satellite mission has imaged the fires and smoke, and mapped the resulting area of burned ground. 38)

- Thankfully, heavy rain yesterday means that most of the flames have now been extinguished. Nevertheless, the Ukrainian authorities also reported yesterday that there was still more than 500 firefighters, 124 fire engines and several helicopters still working to contain the smouldering.

- In 1986, the nuclear site suffered a disastrous meltdown that spread radioactive fallout across Europe. The concerns were that the fires could reach the defunct nuclear reactor and a storage site for radioactive waste, and that there could be a risk of exposure to increased radiation from the burning of contaminated forest and soil.

- Fires around Chernobyl are a seasonal phenomenon, but have been worse than normal this year owing to a mild winter and spring that has left the forest floor dry.

- Satellites are key to keeping an eye on vulnerable regions such as this. Each of the two satellites in Copernicus Sentinel-2 constellation is equipped with a wide-swath multispectral sensor that can image in 13 spectral bands.

Figure 44: An outbreak of wildfires recently threatening the abandoned Chernobyl nuclear power plant in Ukraine. The animation above uses images from Copernicus Sentinel-2 to show the situation prior to the fires on 7 April, and then on 12 April. The image from 12 April is from one acquisition, but has been processed to show thermal anomalies, smoke from the fires and then the burned area through the smoke (image credit: ESA, the image contains Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 44: An outbreak of wildfires recently threatening the abandoned Chernobyl nuclear power plant in Ukraine. The animation above uses images from Copernicus Sentinel-2 to show the situation prior to the fires on 7 April, and then on 12 April. The image from 12 April is from one acquisition, but has been processed to show thermal anomalies, smoke from the fires and then the burned area through the smoke (image credit: ESA, the image contains Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

- The mission is being used as part of an activation of the Copernicus Emergency Management Service to provide maps of the burned area to help authorities respond to the consequences of this recent fire. The image on the right is an example of a map being provided through the service.

Figure 45: This map has been generated by the Copernicus Emergency Management Service using an image acquired by Copernicus Sentinel-2 on 12 April 2020. The map shows the burned area around Chernobyl in the Ukraine following an outbreak of wildfires. The Emergency Management Service was activated on 14 April 2020 to help in the response to the fires (image credit: ESA, Copernicus Emergency Management Service)
Figure 45: This map has been generated by the Copernicus Emergency Management Service using an image acquired by Copernicus Sentinel-2 on 12 April 2020. The map shows the burned area around Chernobyl in the Ukraine following an outbreak of wildfires. The Emergency Management Service was activated on 14 April 2020 to help in the response to the fires (image credit: ESA, Copernicus Emergency Management Service)

- Using satellite data, the service provides information for emergency response for different types of disasters, including meteorological and geophysical hazards, deliberate and accidental disasters, humanitarian disasters, and for prevention, preparedness, response and recovery activities.

- The animation featured in Figures 44 and 45 uses images from Copernicus Sentinel-2 to show the situation prior to the fires on 7 April, and then on 12 April. The image from 12 April is from one acquisition, but has been processed to show the smoke from the fires and then the burned area through the smoke.

Figure 46: This extract of a burned area mapping product was generated by the CIMA Foundation and Fadeout using the WASDI processing environment. It is based on images acquired by Copernicus Sentinel-2 on 26 March and 10 April 2020. It shows the burned area around Chernobyl in the Ukraine on 10 April following an outbreak of wildfires. CIMA Foundation is leading an ESA project called eDRIFT that is looking at Disaster Risk Financing using Cloud processing of Copernicus Sentinel imagery (image credit: ESA, the image contains Copernicus Sentinel data (2020), processed by CIMA Foundation and Fadeout srl)
Figure 46: This extract of a burned area mapping product was generated by the CIMA Foundation and Fadeout using the WASDI processing environment. It is based on images acquired by Copernicus Sentinel-2 on 26 March and 10 April 2020. It shows the burned area around Chernobyl in the Ukraine on 10 April following an outbreak of wildfires. CIMA Foundation is leading an ESA project called eDRIFT that is looking at Disaster Risk Financing using Cloud processing of Copernicus Sentinel imagery (image credit: ESA, the image contains Copernicus Sentinel data (2020), processed by CIMA Foundation and Fadeout srl)

• April 14, 2020: Italy’s efforts to limit the spread of the coronavirus disease has led to a decrease of boat traffic in Venice’s famous waterways – as captured by the Copernicus Sentinel-2 mission. 39)

- The Italian government imposed a nationwide lockdown on 9 March 2020, drastically reducing the movement of Venice’s boats including the ‘vaporetti,’ or water buses, as well as cruise ships.

- The Grand Canal and the Giudecca Channel appear almost empty compared to last year, and traffic from Venice to the island of Murano appears to be non-existent. Two large cruise ships can be seen in the U-shaped Port of Venice in 2019, west of the city, while this year the port appears empty.

Figure 47: These images show one of the effects of the locked-down city of Venice, in northern Italy. The top image, captured 13 April 2020, shows a distinct lack of boat traffic compared to the image from 19 April 2019 (image credit: ESA, the images contain modified Copernicus Sentinel data (2019-20), processed by ESA, CC BY-SA 3.0 IGO)
Figure 47: These images show one of the effects of the locked-down city of Venice, in northern Italy. The top image, captured 13 April 2020, shows a distinct lack of boat traffic compared to the image from 19 April 2019 (image credit: ESA, the images contain modified Copernicus Sentinel data (2019-20), processed by ESA, CC BY-SA 3.0 IGO)

- According to the Italian news agency, ANSA, the streets and canals of Venice remained almost empty over Easter – with only police officers patrolling the streets and waterways.

- Meanwhile, the lockdown has led to a sharp decline in air pollution across Europe – particularly in Rome and the Po Valley in northern Italy.

• April 10, 2020: In this week's edition of the Earth from Space program, Copernicus Sentinel-2 takes us over an area in the Wheatbelt region of Western Australia. 40)

- The term ‘wheat belt’ refers to inland agricultural areas in eastern and southern Australia named for their production of wheat – which was the main agricultural product in the early history of Australia’s development. Wheatbelt areas are usually arid, making agriculture largely reliant on rainfall and irrigation.

- The Wheatbelt is one of the nine regions of Western Australia and lies in the southwest section of the state. Covering an area of around 160,000 km2, the region only has an estimated population of around 75,000 residents.

- This image shows a part of the region which is very arid and is used mainly for agricultural production. The area is a major producer of wheat, barley and wool. The area is also used for the livestock production and the pastoral sheep farming, as well as horticulture.

- Fields have a distinctive appearance in this week’s image, creating a colorful patchwork of geometric shapes. This composite image of Figure 48 was created by combining three separate images from the near-infrared channel from the Copernicus Sentinel-2 mission.

Figure 48: The first image, from 9 May 2019, is visible in red; the second from 6 September 2019, can be seen in green; and the third from January 2020 can be seen in blue. All other colors visible in the image are different mixtures of red, green and blue, and vary according to their stage of growth over the nine-month period. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 48: The first image, from 9 May 2019, is visible in red; the second from 6 September 2019, can be seen in green; and the third from January 2020 can be seen in blue. All other colors visible in the image are different mixtures of red, green and blue, and vary according to their stage of growth over the nine-month period. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

- According to reports from the Department of Primary Industries and Regional Development, Western Australia’s climate has changed over recent decades, with significant reductions in growing-season rainfall. Climate variability and changing weather patterns strongly affect agriculture – increasing production risk for crops and pastures.

- Owing to their unique perspective from space, Earth observation satellites are key in mapping and monitoring croplands. The Copernicus Sentinel-2 mission is specifically designed to provide images that can be used to distinguish between different crop types as well as data on numerous plant indices, such as leaf area index, leaf chlorophyll content and leaf water content – all of which are essential to accurately monitor plant growth.

• April 03, 2020: The Copernicus Sentinel-2 mission takes us over Finistère – a French department in the west of Brittany. 41)

- Brittany is an important cultural region in the northwest of France. Previously a kingdom, then a duchy, Brittany was united with France in 1532. Today, Brittany is divided into four departments: Ille-et-Vilaine in the east, Morbihan in the south, Côtes d'Armor in the north and Finistère in the west. Brittany has over 1000 km of coastline – with a wide range of beaches and rocky, coastal scenery making it a popular holiday destination.

Figure 49: Fields blanket the French countryside and dominate this image captured on 27 September 2018 with Sentinel-2. Brittany is one of France’s leading vegetable growing regions known for its artichokes, cauliflowers, carrots and potatoes. In fact, France is one of the EU’s leading agricultural countries and is home to around a third of all agricultural land in the EU. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)
Figure 49: Fields blanket the French countryside and dominate this image captured on 27 September 2018 with Sentinel-2. Brittany is one of France’s leading vegetable growing regions known for its artichokes, cauliflowers, carrots and potatoes. In fact, France is one of the EU’s leading agricultural countries and is home to around a third of all agricultural land in the EU. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

- The city of Brest can be seen in the left of the image, lying along the sheltered bay close to the western tip of the peninsula. With a population of around 150,000, Brest is the largest city in the Finistère department. The port town played an important role in French history as it was a key naval base during World War II.

- Just west of Brest lies Pointe de Corsen, otherwise known as the westernmost point of continental France. The name Finistère derives from the Latin ‘Finis Terræ’ – meaning ‘end of the earth’.

- Ushant, or Ouessant in French, and the Iroise Islands lie around 30 km from the coast of France and can be seen in the left of the image.

- The Copernicus Sentinel-2 mission is designed to provide images that can be used to distinguish between different crop types as well as data on numerous plant indices, such as leaf area, leaf chlorophyll and leaf water – all essential to monitor plant growth accurately.

• March 20, 2020: Earth’s land is covered by a range of different types of vegetation, from forest and marsh to crops and bodies of water, as well as the artificial surfaces that are an increasingly common feature of our landscape. 42)

- Mapping land cover is not only essential for monitoring change, but it also underpins numerous practical applications. However, generating these maps entails handling huge amounts of satellite data and some technical expertise. Thanks to the Copernicus Sentinel-2 mission and new cloud-computing resources, fully automated land-cover maps in 10 m resolution are on the horizon.

- Natural processes, climate change and the way we use land to feed, shelter and support a growing population means that Earth’s land cover is in a continual state of change.

- Information on land cover is important at many levels – at local, regional, national and global scales, and over different timescales.

- Up-to-date maps are a basic source of information to track the impact that human activity, natural processes and climate change have on land cover. These maps are critical for making informed policy, development and resource management decisions, and for disciplines such as agriculture, forestry, water management, urban planning, environmental protection and crisis management.

- While the Copernicus Sentinel-2 mission delivers ideal images to map land cover, producing maps means that huge amounts of time-series data have to be processed. To make this possible, the ESA-funded Sentinel-2 for Science Land Cover project explored novel ways of capitalizing on the latest cloud-computing technologies and machine learning to automate mapping. While still in the experimental stage, the results demonstrate that fully-automated mapping is just around the corner. For example, Europe’s land-cover has been mapped showing 13 land cover classifications.

- Orbiting almost 800 km above, the two-satellite Copernicus Sentinel-2 mission is on hand to map land cover in 10 m resolution.

Figure 50: Europe land-cover mapped in 10 m resolution of 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by CBK PANsí mi)
Figure 50: Europe land-cover mapped in 10 m resolution of 2017 (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by CBK PANsí mi)

- Each identical satellite carries a multispectral imager that can distinguish between different classes of cover such as forest, cultivated areas, grassland, water and artificial surfaces like roads and buildings. The mission can also be used to determine plant indices such as the amount of chlorophyll and water in leaves so that changes in plant health and growth can be monitored.

Figure 51: Austria land cover map (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by CBK PANsí mi)
Figure 51: Austria land cover map (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by CBK PANsí mi)

- Through this experiment, different methodologies were explored and tested over different areas of the world, including the full European region.

- The scientists used dedicated software developed by the Space Research Center of the Polish Academy of Sciences, CBK PAN, to process the satellite images and auxiliary data.

- Stanislaw Lewinski, from CBK PAN, said, “Indeed mapping land cover is a real technical undertaking, but thanks to funding from ESA we have developed a classification methodology that is mainly automated to make land-cover mapping easier.

Figure 52: Poland land cover map (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by CBK PANsí mi)
Figure 52: Poland land cover map (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by CBK PANsí mi)

- “Our system is based on Copernicus Sentinel-2 imagery where each image tile has been classified separately using a set of images from different times, and we chose a pixel-based approach to maintain the mission’s 10 m resolution. Importantly, it also involved many tests in selected areas across Europe. The final maps have been produced on a platform called CREODIAS with the algorithms and software that we developed.”

- CREODIAS is a large-scale computing and data storage platform that enables processing and publication of results of large-scale data analysis activities. The result is a map of Europe at 10 m resolution displaying 13 land-cover classes.

- ESA’s Espen Volden noted, “While we are still in the experimental stage and some land-cover classes don’t reach an accuracy that can be exploited directly and there are some other artefacts, the results are very promising. We demonstrate that fully-automated mapping is on the horizon, opening the way to much more frequently updated land-cover information than has been possible so far.”

Figure 53: Italy’s land classified map (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by CBK PANsí mi)
Figure 53: Italy’s land classified map (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by CBK PANsí mi)

Viewing and download

- The map of Europe at 10 m resolution displaying 13 land-cover classes can be viewed in full resolution on the CREOSIAS EO Browser (select S2GLC and click search), or accessed as a WMS layer for expert use.

- All classified Sentinel-2 tiles can be downloaded from the CREODIAS finder.

- Download the full-resolution mosaic (see data access), or as reduced-resolution country maps of 35 European countries.

Figure 54: Greece land cover map (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by CBK PANsí mi)
Figure 54: Greece land cover map (image credit: ESA, the image contains modified Copernicus Sentinel data (2017), processed by CBK PANsí mi)

• March 20, 2020: The Copernicus Sentinel-2 mission takes us over Kuwait in the Middle East. With a total area of around 17,800 km2, Kuwait is considered one of the smallest countries in the world. At its most distant points, it is around 200 km north to south and 170 km east to west. 43)

- Situated in the northeast of the Arabian Peninsula, Kuwait shares its borders with Iraq to the north and Saudi Arabia to the south. Kuwait is generally low lying, with the highest point being only 300 m above sea level.

Figure 55: The flat, sandy Arabian Desert covers the majority of Kuwait and appears as a vast expanse of light sand-colored terrain in this image, captured on 25 July 2019. During the dry season, between April and September, the heat in the desert can be severe with daytime temperatures reaching 45ºC and, on occasion, over 50ºC. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 55: The flat, sandy Arabian Desert covers the majority of Kuwait and appears as a vast expanse of light sand-colored terrain in this image, captured on 25 July 2019. During the dry season, between April and September, the heat in the desert can be severe with daytime temperatures reaching 45ºC and, on occasion, over 50ºC. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

- Kuwait City, visible jutting out into Kuwait Bay, holds most of the country’s population – making Kuwait one of the most urbanized countries in the world.

- The various colors of Kuwait Bay come from a combination of wind and the amount of sunlight reflected off the waters. The Sheikh Jaber Al-Ahmad Al-Sabah Causeway can be seen cutting across the bay. The bridge is 36 km long – making it the fourth largest bridge in the world.

- Al-Jahra lies around 50 km west of Kuwait City and is visible as a small, green oasis on the west side of Kuwait Bay. It is the center of the country’s principal agricultural region – producing primarily fruits and vegetables. The circular shapes to the right of Al-Jahra are an example of the pivot irrigation or center-pivot irrigation method, where equipment rotates around a central pivot and crops are watered with sprinklers.

- Just south of Kuwait City lies the Great Burgan oil field – considered the second largest oil field in the world. The Great Burgan comprises three smaller fields: Burgan, Al-Maqwa and Al-Ahmadi. The oil fields can be identified an extensive network of interlocking roads which connect the individual wellheads.

- Satellites, such as Copernicus Sentinel-2, allow us to capture images such as these from space, but also allows us to monitor changing places on Earth. Flying 800 km above, satellites take the pulse of our planet by systematically imaging and measuring changes taking place, which is particularly important in regions that are otherwise difficult to access.

• March 13, 2020: The Copernicus Sentinel-2 mission takes us over Victoria Falls – one of the world’s greatest natural wonders. Victoria Falls, known locally as Mosi-oa Tunya or ‘the smoke that thunders,’ lies along the course of the Zambezi River, on the border between Zambia to the north and Zimbabwe to the south. The Zambezi River flows for around 3500 km from its source on the Central African Plateau and empties into the Indian Ocean. 44)

Figure 56: In this image, captured on 22 February 2019, the river cuts from left to right in the image before plunging over Victoria Falls – visible as a white line in the image. While it is neither the highest nor the widest waterfall in the world, Victoria Falls has a width of around 1700 m and a height of over 100 m which classifies it as the world’s largest sheet of falling water. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA)
Figure 56: In this image, captured on 22 February 2019, the river cuts from left to right in the image before plunging over Victoria Falls – visible as a white line in the image. While it is neither the highest nor the widest waterfall in the world, Victoria Falls has a width of around 1700 m and a height of over 100 m which classifies it as the world’s largest sheet of falling water. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA)

- The spray from the falls normally rises to a height of over 400 m and is sometimes visible from up to 40 km away. The water from the Zambezi River then continues and enters a narrow, zigzagging series of gorges, visible in the bottom right of the image.

- Despite recent reports of Victoria Falls drying up, the Zambezi River is subject to large seasonal fluctuations – with water levels rising and dropping dramatically throughout the year. According to the Zambezi River Authority, the lowest recorded water flows recorded were during the 1995—96 season, which had an annual mean flow of around 390 m3/s, compared to the long-term mean annual flow of around 1100 m3/s.

- The town of Victoria Falls, in Zimbabwe, can be seen west of the falls, while the town of Livingstone – named after the famous Scottish explorer – is visible just north of the falls, in Zambia. The Harry Mwanga Nkumbula airport can be seen west of the town.

- The circular shapes in the image are an example of an irrigation method called pivot irrigation or center-pivot irrigation, where equipment rotates around a central pivot and crops are watered with sprinklers.

• March 6, 2020: Thousands of fires broke out in the Amazon last year – sparking an international media frenzy. A detailed analysis, using data from the European Space Agency’s Climate Change Initiative, indicates that while there was a small increase of fires in 2019 compared to 2018, fires in Brazil were similar to the average annual number of fires detected over the past 18 years. 45)

- While forest fires are common in the Amazon region, they vary considerably from year-to-year driven by changes in climate, as well as variations in deforestation and forest degradation.

- Attention on fires last year sparked an international demand for up-to-date information on active fires – particularly in Brazil. However, these numbers were never compared to the number of fires over a longer period of time.

- Detailed in a recent paper published in Remote Sensing, scientists using data from ESA’s Fire CCI project, analyzed burned areas in South America in both 2018 and 2019 – and compared the data to the 2001-18 yearly average. 46)

- According to the report, the total burned area in South America was around 70% more in 2019 compared to the same period of 2018, however only slightly more than the yearly average over the past 17 years.

- These results are particularly interesting for Brazil, which only saw a 1.7% increase of burned area in 2019 compared to the long-term average.

- Bolivia, on the other hand, saw a 51.4% increase of burned areas in 2019, compared to the yearly average.

- Emilio Chuvieco, science leader of the Fire CCI project, comments, “Studies such as these are important to quantify and monitor fire activities in places such as the Amazon. However, they indicate the importance of long-term data series and studies using higher resolution sensors, such as the Copernicus Sentinel-2 multispectral instrument, to detect fires.”

Figure 57: This map shows the increase or decrease of the total burned area in 2019 compared to the 2001-2018 average (image credit: Lizundia-Loiola, J., Pettinari, M.L., & Chuvieco, E. (2020). Temporal Anomalies in Burned Area)
Figure 57: This map shows the increase or decrease of the total burned area in 2019 compared to the 2001-2018 average (image credit: Lizundia-Loiola, J., Pettinari, M.L., & Chuvieco, E. (2020). Temporal Anomalies in Burned Area)

- Earth observing satellites can be used to detect and monitor fires over frequently affected areas. These burned area estimates are from ESA’s Fire Climate Change Initiative project, which produces long-term datasets of burned area information from satellites, as part of the ESA Climate Change Initiative.

- The data is of use for those interested in historical burned patterns, fire management and emissions analysis and climate change research, by providing a consistent burned area time series.

- Josef Aschbacher, ESA’s Director of Earth Observation Programs, says, “These observations show the challenge we are facing - the processes on Earth and in the forests are very dynamic. The unusual increase of fire activity in 2019 demonstrates that satellite data is essential to get a clear and independent picture in order to also understand long-term trends.”

Figure 58: This graph shows the country distribution of burned areas for 2018, 2019 as well as the average for the 2001-2018 period. Brazil has a 1.7% increase of burned area in 2019 compared to the long-term average [image credit: Lizundia-Loiola, J., Pettinari, M. L., & Chuvieco, E. (2020)]
Figure 58: This graph shows the country distribution of burned areas for 2018, 2019 as well as the average for the 2001-2018 period. Brazil has a 1.7% increase of burned area in 2019 compared to the long-term average [image credit: Lizundia-Loiola, J., Pettinari, M. L., & Chuvieco, E. (2020)]

- Tropical forests are home to around half of the world’s biodiversity, and are considered a fundamental part of Earth’s ecosystem. Quantifying fires in forests is important for the ongoing study of climate, as they have a significant impact on atmospheric emissions – with biomass burning contributing to the global budgets of greenhouse gases.

• March 4, 2020: A powerful winter storm, with lake-effect snow, brought blizzard conditions to New York last week and buried the area surrounding the Great Lakes under a blanket of snow. Days of strong winds, with speeds of over 90 km/h, blew lake water ashore, encasing several homes in ice. 47)

- Lake-effect snow is a weather phenomenon that occurs when cold, dry air picks up moisture by passing over relatively warmer lake waters. The air rises and forms clouds, generating what is known as lake-effect snow. This lake-effect snow is common in the Great Lakes area – where cold air, usually from Canada, moves in.

Figure 59: This image, captured by the Copernicus Sentinel-2 mission on 29 February, shows the extent of the snow in the area surrounding Lake St. Clair, Lake Erie and Lake Huron. A layer of ice can be seen over both Lake St. Clair and Lake Erie (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 59: This image, captured by the Copernicus Sentinel-2 mission on 29 February, shows the extent of the snow in the area surrounding Lake St. Clair, Lake Erie and Lake Huron. A layer of ice can be seen over both Lake St. Clair and Lake Erie (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

• February 28, 2020: Andros Island, the largest island of the Bahamas, is featured in this false-color image captured by the Copernicus Sentinel-2 mission. This image was processed in a way that included the near-infrared channel, which highlights the island’s vegetation in bright red. 48)

- Andros is around 160 km from north to south, and 70 km from east to west at its widest point. The island is largely unpopulated and has undeveloped stretches of land. Even though it is considered a single island, Andros is an archipelago made up of hundreds of small islets and cays connected by estuaries and swamplands together with three major islands: North Andros, Mangrove Cay and South Andros.

- The island’s west coast features many bays, channels and inlets. The turquoise colors of the ocean show shallow waters, whereas the dark blue colors are the deep ocean.

- The West Side National Park covers the west part of Andros and includes its pristine coastal wetlands. The 6000 km2 park is the largest protected area in the region,and is a prime habitat for bonefish and an important feeding area for the endangered West Indian flamingo.

Figure 60: This image was acquired with Sentinel-2 on 5 September 2019, just days after the mighty Hurricane Dorian passed over the Bahamas and unleashed a siege of destruction. Dorian is reported to be one of the most powerful Atlantic hurricanes on record – with storm surges, wind and rain that claimed many lives, destroyed homes and left thousands of people homeless. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 60: This image was acquired with Sentinel-2 on 5 September 2019, just days after the mighty Hurricane Dorian passed over the Bahamas and unleashed a siege of destruction. Dorian is reported to be one of the most powerful Atlantic hurricanes on record – with storm surges, wind and rain that claimed many lives, destroyed homes and left thousands of people homeless. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

- Compared to acquisitions captured in the days leading up to Hurricane Dorian making landfall, the area in the top-left of the image appears to be more flooded owing to heavy rainfall, and several submerged islands can be seen.

- In response to Hurricane Dorian, the Copernicus Emergency Mapping Service was activated. The service uses observations from several Earth observation satellites, such as Copernicus Sentinel-1 and-2, to provide flood, risk and recovery maps.

• February 14, 2020: For Valentine’s Day, we bring you this Copernicus Sentinel-2 image capturing a beautiful heart-shaped geographical formation in the dramatic landscape of the southern highlands of Bolivia. 49)

- The highlands are part of the Altiplano, meaning High Plateau, a region that stretches almost 1000 km from Peru to Bolivia. The landscape consists of a series of basins lying about 3500 m above sea level and is the most extensive area of high plateau on Earth, outside Tibet.

- This particular area featured here is a transition between the desert in the west and the tropical forest in the east. The heart-shaped formation has been molded by many layers of different geological formations over time. The many streams and rivers visible in this image have also contributed to the shaping of the landscape as we see it today.

- Satellites, such as Copernicus Sentinel-2, allow us to capture beautiful images such as these from space, but also to monitor changing places on Earth. Flying 800 km above, satellites take the pulse of our planet by systematically imaging and measuring changes taking place, which is particularly important in regions that are otherwise difficult to access. This allows for informed decisions to be made to help protect our world for future generations and for all citizens that inhabit our beloved Earth.

- We are sending all our love for Valentine’s Day from the high plateaus of Bolivia – and hope we continue our celebration of love for Earth every day of the year.

Figure 61: This false-color composite image of Sentinel-2 was processed by selecting spectral bands that can be used for classifying geological features – but here the image processing also highlights this lovely heart for today’s image. Sucre, the capital of the Chuquisaca Department, is visible at the top of the image in grey. Designated a UNESCO World Heritage Site, the city lies at an elevation of around 2800 m above sea level. To the left of Sucre, the Maragua crater can be seen – a popular hiking destination. This image, which was captured on 26 January 2020, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 61: This false-color composite image of Sentinel-2 was processed by selecting spectral bands that can be used for classifying geological features – but here the image processing also highlights this lovely heart for today’s image. Sucre, the capital of the Chuquisaca Department, is visible at the top of the image in grey. Designated a UNESCO World Heritage Site, the city lies at an elevation of around 2800 m above sea level. To the left of Sucre, the Maragua crater can be seen – a popular hiking destination. This image, which was captured on 26 January 2020, is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

• February 12, 2020: The Pine Island Glacier recently spawned an iceberg over 300 km2 that very quickly shattered into pieces. This almost cloud-free image, captured on 11 February by the Copernicus Sentinel-2 mission, shows the freshly broken bergs in detail (Figure 62). 50)

- A recent animation using 57 radar images captured by the Copernicus Sentinel-1 mission shows just how quickly the emerging cracks from the glacier grew – leading to this historic calving event.

- Thanks to the combination of both optical and radar images from the Copernicus Sentinel satellite missions, growing cracks were spotted in the Pine Island Glacier last year, and since then, scientists have been keeping a close eye on how quick the cracks were growing.

- The Pine Island Glacier, along with its neighbor Thwaites glacier, connect the center of the West Antarctic Ice Sheet with the ocean, and together discharge significant quantities of ice into the ocean.

Figure 62: This image of the Pine Island Glacier, captured on 11 February 2020 by the Copernicus Sentinel-2 mission, shows the freshly broken bergs in detail (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 62: This image of the Pine Island Glacier, captured on 11 February 2020 by the Copernicus Sentinel-2 mission, shows the freshly broken bergs in detail (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

• January 31, 2020: World Wetlands Day is celebrated internationally each year on 2 February. It marks the anniversary of the signing of the Convention on Wetlands of International Importance, known as the Ramsar Convention, in Ramsar, Iran, on 2 February 1971. 51)

- World Wetlands Day raises global awareness about the vital role of wetlands for our planet, paying particular attention to wetland biodiversity.

- The equatorial lake (Figure 63) covers an area of around 250 km2 and has an average depth of around 2.4 meters. Lake George is fed by a complex system of rivers and streams originating from the Rwenzori mountains – supplying a system of permanent swamps surrounding the lake.

- A dense fringe of wetland grass, visible in bright green, can be seen around the edges of the lake in the center of the image.

- The wetlands provide a natural living space for a number of mammals including elephants, hippopotamus and antelope. They also provide a habitat for over 150 species of birds including several rare species such as the saddle-billed stork.

- Seen from above, the waters of Lake George appear green as a result of the thick concentration of blue-green algae. Metal pollution, mine seepage and agricultural runoff has caused serious pollution to the lake’s waters and are severely impacting the lake’s health.

- Lake George drains through the Kazinga Channel in the image’s center. The wide, 32km long channel connects Lake George with Lake Edward, which lies on the border between Uganda and the Democratic Republic of the Congo.

- The Kazinga Channel flows through the Queen Elizabeth National Park. The almost 2000 km2 park is known for its wildlife including the African buffalo and the Nile crocodile.

- The park is also famous for its volcanic features, including volcanic cones and deep craters which can be seen dotted around the image. Many contain crater lakes, including the Katwe crater lake, whose salt deposits have been mined for centuries.

Figure 63: This Copernicus Sentinel-2 image takes us over Lake George, in western Uganda. In 1988, Lake George was designated as Uganda’s first Ramsar site, given its importance as a center for biological diversity. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)
Figure 63: This Copernicus Sentinel-2 image takes us over Lake George, in western Uganda. In 1988, Lake George was designated as Uganda’s first Ramsar site, given its importance as a center for biological diversity. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

• January 24, 2020: This Copernicus Sentinel-2 image features an area in the Santa Cruz Department of Bolivia, where part of the tropical dry forest has been cleared for agricultural use. 52)

- Since the 1980s, the area has been rapidly deforested owing to a large agricultural development effort where people from the Andean high plains (the Altiplano region) have been relocated to the lowlands of Bolivia.

- The relatively flat lowlands and abundant rainfall make this region suitable for farming. In fact, the local climate allows farmers to benefit from two growing seasons. The region has been transformed from dense forest into a patterned expanse of agricultural land. This deforestation method, common in this part of Bolivia, is characterized by the radial patterns that can be seen clearly in the image.

- Each patterned field is approximately 6.25 km2 and each side is around 2.5 km long (Figure 64).

- Small settlements can be seen in the center of each individual field in the image, which typically contain a church, a school and a soccer field. These communities are joined by a road network depicted by the straight lines that bisect the radial fields and connect the adjacent areas.

- Meandering streams and rivers can be seen flowing through the fields. The long, thin strips of land in the top right of the image are most likely cultivated soybean fields.

- Rainforests worldwide are being destroyed at an alarming rate. This is of great concern as they play an important role in global climate, and are home to a wide variety of plants and animals.

- Because of their unique perspective from space, Earth observation satellites are instrumental in providing comprehensive information on the full extent and rate of deforestation, which is particularly useful for monitoring remote areas.

Figure 64: This composite image was created by combing three separate ‘Normalized Difference Vegetation Index’ images from the Copernicus Sentinel-2 mission. The first image, from 8 April 2019, is visible in red; the second from 22 June 2019, can be seen in green; and the third from 5 September 2019 can be seen in blue. The Normalized Difference Vegetation Index is widely used in remote sensing as it gives scientists an accurate measure of healthy and status of plant growth. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 64: This composite image was created by combing three separate ‘Normalized Difference Vegetation Index’ images from the Copernicus Sentinel-2 mission. The first image, from 8 April 2019, is visible in red; the second from 22 June 2019, can be seen in green; and the third from 5 September 2019 can be seen in blue. The Normalized Difference Vegetation Index is widely used in remote sensing as it gives scientists an accurate measure of healthy and status of plant growth. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)

• January 23, 2020: The Philippines’ Taal volcano erupted on 12 January 2020 – spewing an ash plume approximately 15 km high and forcing large-scale evacuations in the nearby area. 53)

- The optical image of Figure 65 has also been processed using the mission’s short-wave infrared band to show the ongoing activity in the crater, visible in bright red. Ash blown by strong winds can be seen in Agoncillo, visible southwest of the Taal volcano. Ash has also been recorded in other areas of the Batangas province, as well as Manila and Quezon.

- According to The Philippine Institute of Volcanology and Seismology bulletin published today, sulphur dioxide emissions were measured at an average of around 140 tons. The Taal volcano still remains on alert level four, meaning an explosive eruption is possible in the coming hours or days. The highest alert level is five which indicates an eruption is taking place.

- According to the National Disaster Risk Reduction and Management Council, over 50,000 people have been affected so far. In response to the eruption, the Copernicus Emergency Mapping Service was activated. The service uses satellite observations to help civil protection authorities and, in cases of disaster, the international humanitarian community, respond to emergencies.

Figure 65: This almost cloud-free image was captured today 23 January at 02:20 GMT (10:20 local time) by the Copernicus Sentinel-2 mission, and shows the island, in the center of the image, completely covered in a thick layer of ash (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 65: This almost cloud-free image was captured today 23 January at 02:20 GMT (10:20 local time) by the Copernicus Sentinel-2 mission, and shows the island, in the center of the image, completely covered in a thick layer of ash (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

• January 15, 2020: Heavy rainfall has triggered flooding in southern Iran, particularly in the Sistan and Baluchestan, Hormozgan and Kerman provinces. The downpour has led to blocked roads and destroyed bridges, crops and houses – displacing thousands of people. 54)

- The flooding has also affected Zahedan, as well as Konarak, Saravan, Nik Shahr, Delgan, Bazman, Chabahar, Zarābād and Khash.

- In response to the flood, the Copernicus Emergency Mapping Service was activated. The service uses satellite observations to help civil protection authorities and, in cases of disaster, the international humanitarian community, respond to emergencies.

Figure 66: This image, captured by the Copernicus Sentinel-2 mission, shows the extent of the flooding in the Sistan and Baluchestan province on 13 January 2020. Flooded areas are visible in brown, while the flooded villages are highlighted by dotted circles. Sediment and mud, caused by the heavy rains, can be seen gushing from the Bahu Kalat River, Iran, and Dasht River, Pakistan, into Gwadar Bay (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)
Figure 66: This image, captured by the Copernicus Sentinel-2 mission, shows the extent of the flooding in the Sistan and Baluchestan province on 13 January 2020. Flooded areas are visible in brown, while the flooded villages are highlighted by dotted circles. Sediment and mud, caused by the heavy rains, can be seen gushing from the Bahu Kalat River, Iran, and Dasht River, Pakistan, into Gwadar Bay (image credit: ESA, the image contains modified Copernicus Sentinel data (2020), processed by ESA, CC BY-SA 3.0 IGO)

• January 10, 2020: The Copernicus Sentinel-2 mission takes us over the Faroe Islands, located halfway between Iceland and Norway in the North Atlantic Ocean. The Faroe Islands are an archipelago made up of 18 jagged islands and are a self-governing nation under the external sovereignty of the Kingdom of Denmark. 55)

- The archipelago is around 80 km wide and has a total area of approximately 1400 km2. The official language of the Faroe Islands is Faroese, a Nordic language which derives from the language of the Norsemen who settled the islands over 1000 years ago.

- The islands have a population of around 50,000 inhabitants – as well as 70,000 sheep. Around 40% of the population reside in the capital and largest city of the Faroe Islands, Tórshavn, visible on the island of Streymoy, slightly above the center of the image.

- The islands are a popular destination for birdwatchers, particularly on the island of Mykines, the westernmost island of the Faroese Archipelago. The island provides a breeding and feeding habitat for thousands of birds, including the Atlantic Puffins.

- Several inland water bodies can be seen dotted around the islands. Lake Sørvágsvatn, the largest lake of the Faroe Islands, is visible at the bottom of Vágar Island to the right of Mykines. Vágar Airport, the only airport in the Faroe Islands, can be seen left of the lake.

- The official language of the Faroe Islands is Faroese, a Nordic language which derives from the language of the Norsemen who settled the islands over 1000 years ago.

- The islands are particularly known for their dramatic landscape, grass-roofed houses and treeless moorlands. The Faroe Islands boast over 1000 km of coastline and because of their elongated shape, one can never be more than five km to the ocean from any point of the islands.

Figure 67: In this image of Sentinel-2, captured on 21 June 2018, several clouds can be seen over the Northern Isles, top right of the image. Low vegetation is visible in bright green. The unique landscape of the Faroe Islands was shaped by volcanic activity approximately 50 to 60 million years ago. The original plateau was later restructured by the glaciers of the ice age and the landscape eroded into an archipelago characterized by steep cliffs, deep valleys and narrow fjords. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)
Figure 67: In this image of Sentinel-2, captured on 21 June 2018, several clouds can be seen over the Northern Isles, top right of the image. Low vegetation is visible in bright green. The unique landscape of the Faroe Islands was shaped by volcanic activity approximately 50 to 60 million years ago. The original plateau was later restructured by the glaciers of the ice age and the landscape eroded into an archipelago characterized by steep cliffs, deep valleys and narrow fjords. This image is also featured on the Earth from Space video program (image credit: ESA, the image contains modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO)

• January 9, 2020: Ferocious bushfires have been sweeping across Australia since September, fuelled by record-breaking temperatures, drought and wind. The country has always experienced fires, but this season has been horrific. A staggering 10 million hectares of land have been burned, at least 24 people have been killed and it has been reported that almost half a billion animals have perished. 56)

Figure 68: The Copernicus Sentinel-2 mission has been used to image the fires. The Sentinel-2 satellites each carry just one instrument – a high-resolution multispectral imager with 13 spectral bands. The smoke, flames and burn scars can be seen clearly in the image shown here, which was captured on 31 December 2019. The large brownish areas depict burned vegetation and provide an idea of the size of the area affected by the fires here – the brown ‘strip’ running through the image has a width of approximately 50 km and stretches for at least 100 km along the Australian east coast (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)
Figure 68: The Copernicus Sentinel-2 mission has been used to image the fires. The Sentinel-2 satellites each carry just one instrument – a high-resolution multispectral imager with 13 spectral bands. The smoke, flames and burn scars can be seen clearly in the image shown here, which was captured on 31 December 2019. The large brownish areas depict burned vegetation and provide an idea of the size of the area affected by the fires here – the brown ‘strip’ running through the image has a width of approximately 50 km and stretches for at least 100 km along the Australian east coast (image credit: ESA, the image contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO)



1) ”Kyiv, Ukraine,” ESA Applications, 11 December 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/12/Kyiv_Ukraine

2) ”Banks Peninsula, New Zealand,” ESA Applications, 4 December 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/12/Banks_Peninsula_New_Zealand

3) ”Kiruna, Sweden,” ESA Applications, 27 November 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/11/Kiruna_Sweden

4) ”Vandenberg Air Force Base, California,” ESA Applications, 20 November 2020, URL: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2

5) ”Darmstadt, Germany,” ESA Applications, 13 November 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/11/Darmstadt_Germany

6) ”Sentinel data enables new system for agricultural monitoring in Poland,” ESA Applications, 12 November 2020, URL: https://www.esa.int/Applications/Observing_the_Earth/
Copernicus/Sentinel_data_enables_new_system_for_agricultural_monitoring_in_Poland

7) ”Zeeland, Netherlands,” ESA Applications, 16 October 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/10/Zeeland_Netherlands

8) ”Laguna San Rafael National Park, Chile,” ESA Applications, 9 October 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/10/Laguna_San_Rafael_National_Park_Chile

9) ”New York City,” ESA Applications, 2 October 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/10/New_York_City

10) Tarawa, Kiribati,” ESA Applications, 25 September 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/09/Tarawa_Kiribati

11) ”Vatnajökull, Iceland,” ESA Applications, 18 September 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/09/Vatnajoekull_Iceland

12) ”Satellite data help climbers ascend Mount Everest,” ESA Applications, 17 September 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/09/Satellite_data_help_climbers_ascend_Mount_Everest

13) ”Copernicus Sentinel-2 monitors glacier icefall, helping climbers ascend Mount Everest,” ESA News, 17 September 2020, URL: https://sentinels.copernicus.eu/web/sentinel/news/-/
article/copernicus-sentinel-2-monitors-glacier-icefall-helping-climbers-ascend-mount-everest

14) Bas Altena and Andreas Kääb, ”Ensemble matching of repeat satellite images applied to measure fast-changing ice flow, verified with mountain climber trajectories on Khumbu icefall, Mount Everest,” Journal of Glaciology, Published: 11 August 2020, https://doi.org/10.1017/jog.2020.66, URL: https://tinyurl.com/yy8tkwrj

15) ”Spalte breaks up,” ESA Applications, 15 September 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/09/Spalte_breaks_up

16) ”Gulf of Kutch, India,” ESA Applications, 04 September 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/09/Gulf_of_Kutch_India

17) ”Mauritius oil spill,” ESA Applications, 11 August 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/08/Mauritius_oil_spill

18) ”Discovering new penguin colonies from space,” ESA Applications, 05 August 2020, URL: https://www.esa.int/Applications/Observing_the_Earth/
Copernicus/Sentinel-2/Discovering_new_penguin_colonies_from_space

19) Peter T. Fretwell, Philip N. Trathan, ”Discovery of new colonies by Sentinel2 reveals good and bad news for emperor penguins,”Remote Sensing in Ecology and Conservation, https://doi.org/10.1002/rse2.176, Published: 04 August 2020, URL: https://zslpublications.onlinelibrary.wiley.com/doi/epdf/10.1002/rse2.176

20) ”Flinders Ranges, South Australia,” ESA Applications, 31 July 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/07/Flinders_Ranges_South_Australia

21) ”Utah's Great Salt Lake,” ESA Applications, 17 July 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/07/Utah_s_Great_Salt_Lake

22) ”Ari Atoll, Maldives,” ESA Applications, 3 July 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/07/Ari_Atoll_Maldives

23) ”Roter Kamm impact crater,” ESA Applications, 30 June 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/06/Roter_Kamm_impact_crater

24) ”Peruvian Andes,” ESA Applications, 26 June 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/06/Peruvian_Andes

25) ”Great Rift Valley, Kenya,” ESA Applications, 19 June 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/06/Great_Rift_Valley_Kenya

26) ”Barcelona, Spain,” ESA Applications, 12 June 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/06/Barcelona_Spain

27) ”Parking in a pandemic,” ESA Applications, 9 June 2020, URL: http://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2/Parking_in_a_pandemic

28) ”Arctic Circle oil spill,” ESA Applications, 5 June 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/06/Arctic_Circle_oil_spill

29) ”Colorful Queensland, Australia,” ESA Applications, 5 June 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/06/Colourful_Queensland_Australia

30) ”Abu Dhabi,” ESA Application, 29 May 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/05/Abu_Dhabi

31) ”Ice jam flooding in Fort McMurray,” ESA Applications, 28 May 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/05/Ice_jam_flooding_in_Fort_McMurray

32) ”Atacama minerals,” ESA Applications, 22 May 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/05/Atacama_minerals

33) ”San Francisco Bay,” ESA Applications, 15 May 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/05/San_Francisco_Bay

34) ”Southern Ukraine,” ESA Applications, 01 May 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/05/Southern_Ukraine

35) ”Namib Desert,” ESA Applications, 24 April 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/04/Namib_Desert

36) ”Dutch tulip fields come into bloom,” ESA Applications, 23 April 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/04/Dutch_tulip_fields_come_into_bloom

37) ”Montevideo, Uruguay,” ESA Applications, 17 April 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/04/Montevideo_Uruguay

38) ”Mapping Chernobyl fires from space,” ESA / Applications / Observing the Earth / Copernicus / Sentinel-2, 16 April 2020, URL: http://www.esa.int/Applications/Observing_the_Earth
/Copernicus/Sentinel-2/Mapping_Chernobyl_fires_from_space

39) ”Deserted Venetian lagoon,” ESA Applications, 14 April 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/04/Deserted_Venetian_lagoon

40) ”Earth from Space: Wheatbelt, Western Australia,” ESA Applications, 10 April 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/04/Wheatbelt_Western_Australia

41) ”Finistère, France,” ESA Applications, 03 April 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/04/Finistere_France

42) ”Land-cover maps of Europe from the Cloud,” ESA / Applications / Observing the Earth / Copernicus / Sentinel-2, 20 March 2020, URL: http://www.esa.int/Applications/Observing_the_Earth
/Copernicus/Sentinel-2/Land-cover_maps_of_Europe_from_the_Cloud

43) ”Kuwait,” ESA Applications, 20 March 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/03/Kuwait

44) ”Victoria Falls,” ESA Applications, 13 March 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/03/Victoria_Falls

45) ”Burned area trends in the Amazon similar to previous years,” ESA / Applications / Observing the Earth, 06 March 2020, URL: http://www.esa.int/Applications/Observing_the_Earth
/Burned_area_trends_in_the_Amazon_similar_to_previous_years

46) Joshua Lizundia-Loiola, M. Lucrecia Pettinari and Emilio Chuvieco, ” Temporal Anomalies in Burned Area Trends: Satellite Estimations of the Amazonian 2019 Fire Crisis,” Remote Sensing Letter, Vol. 12, No 1, Published: 2 January 2020, https://doi.org/10.3390/rs12010151

47) ”Let it snow,” ESA Applications, 4 March 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/03/Let_it_snow

48) “Andros, Bahamas,” ESA Applications, 28 February 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/02/Andros_Bahamas

49) “Bolivian highland heart,” ESA Applications, 14 February 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/02/Bolivian_highland_heart

50) „Iceberg shattered,“ ESA Applications, 12 February 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/02/Iceberg_shattered

51) ”Lake George, Uganda,” ESA Applications, 31 January 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/01/Lake_George_Uganda

52) ”Deforestation in Bolivia,” ESA Applications, 24 January 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/01/Deforestation_in_Bolivia

53) ”Taal volcano blanketed by ash,” ESA Applications, 23 January 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/01/Taal_volcano_blanketed_by_ash

54) ”Flooding in southern Iran,” ESA Applications, 15 January 2020, URL: http://www.esa.int/ESA_Multimedia/Images/2020/01/Flooding_in_southern_Iran

55) ”Faroe Islands,” ESA Applications, 10 January 2020, URL: https://www.esa.int/ESA_Multimedia/Images/2020/01/Faroe_Islands

56) ”Smoke and flames in Australia,” ESA Applications, 9 January 2020, URL: http://www.esa.int/Applications/Observing_the_Earth/Copernicus/Australia_like_a_furnace


The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: ”Observation of the Earth and Its Environment: Survey of Missions and Sensors” (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (herb.kramer@gmx.net).

References    Back to top