Minimize CST-100

Boeing's Starliner CST-100 (Crew Space Transportation-100)

Launch    Flight Test    References

The CST-100 Starliner crew capsule is a spacecraft design constructed by Boeing in collaboration with Bigelow Aerospace as their entry for NASA's Commercial Crew Development (CCDev) program. Its primary purpose is to transport crew to the ISS (International Space Station) and to private space stations such as the proposed Bigelow Aerospace Commercial Space Station.

Some background:

NASA's Commercial Crew Development(CCDev) program started in 2006 with the goal of establishing a US commercial crew space transportation capability to achieve safe, reliable and cost-effective access to LEO (Low Earth Orbit) and the ISS (International Space Station). To achieve this goal by 2017, NASA is supporting a number of commercial companies by providing funds, data and assistance as these companies go through their development efforts and meet milestones which are reviewed by NASA.

• In the first phase of the program, NASA provided a combined $50 million in 2010 to five American companies, intended to foster research and development into human spaceflight concepts and technologies in the private sector.

• A second set of Commercial Crew Development proposals were solicited by NASA in October 2010 for technology development project durations of up to 14 months.

• In August 2012, NASA awarded Space Act Agreements for the third phase, named CCiCap (Commercial Crew Integrated Capability). NASA partnered with companies to mature the design and development of transportation systems that include spacecraft, launch vehicles, and ground and mission systems.

• As of August 31, 2013, NASA has spent $1.1 billion of seed money on its commercial crew development efforts in a public/private partnership. NASA is currently working with three companies – The Boeing Company (Boeing), Space Exploration Technologies Corporation (SpaceX), and Sierra Nevada Corporation (Sierra Nevada) – using a combination of funded Space Act Agreements and contracts based on the Federal Acquisition Regulation (FAR) to develop commercial crew transportation capabilities. 1)

NASA's acquisition strategy:

1) NASA awarded firm-fixed-price contracts to Boeing, SpaceX, and Sierra Nevada for delivery and acceptance of certification plans for their crew transportation system.

2) In mid-summer 2014, NASA plans to enter into at least one but ideally two firm-fixed-price contracts for the verification, validation, test, and final certification of a crew transportation system or systems.

3) NASA plans to implement Part 3 of the acquisition strategy by issuing a firm-fixed-price ISS transportation services contract to at least one partner in 2017.

In May 2014, NASA and Industry completed the First Phase to Certify New Crew Transportation Systems. Under the contracts, The Boeing Company, Sierra Nevada Corporation Space Systems (SNC) and Space Exploration Technologies (SpaceX) completed reviews detailing how each plans to meet NASA's certification requirements to transport space station crew members to and from the orbiting laboratory. NASA awarded the contracts totaling $30 million in December 2012. 2)

CCDev projects:

• The Boeing entry is called CST-100 (Crew Space Transportation-100)

• The Dragon Spacecraft is the entry of SpaceX

• The SNC (Sierra Nevada Corporation) entry is the Dream Chaser spaceplane.

On Sept. 16, 2014, NASA Administrator Charles Bolden announced the selection of Boeing and SpaceX to transport U.S. crews to and from the space station using their CST-100 and Crew Dragon spacecraft (Dragon V2), respectively, with a goal of ending the nation’s sole reliance on Russia in 2017.

These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for human space transportation systems capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to ferry astronauts to the International Space Station and return them safely to Earth.

The companies selected to provide this transportation capability and the maximum potential value of their FAR (Federal Acquisition Regulation)-based firm fixed-price contracts are:

• The Boeing Company, Houston, $4.2 billion

• Space Exploration Technologies Corp., Hawthorne, California, $2.6 billion

The awards from NASA’s Commercial Crew Program (CCP) offices will continue to be implemented as a PPP (Public-Private Partnership) service and are the fruition of NASA’s strategy to foster the development of privately built human spaceships that began in 2010.

Table 1: NASA chooses American companies to transport U.S. Astronauts to the International Space Station 3)

The design draws upon Boeing's experience with NASA's Apollo, Space Shuttle and ISS programs as well as the Orbital Express project sponsored by the Department of Defense. The CST-100 has no Orion heritage, but it is sometimes confused with the earlier and similar Orion-derived Orion Lite proposal that Bigelow Aerospace was reportedly working on with technical assistance from Lockheed Martin.

It will use the NASA Docking System for docking and use the Boeing Lightweight Ablator for its heatshield. The Starliner's solar cells will provide more than 2.9 kW of electricity, will be placed on top of the micro-meteoroid debris shield located at the bottom of the spacecraft's service module.

The Starliner was designed to accommodate seven passengers, or a mix of crew and cargo, for missions to low-Earth orbit. For NASA service missions to the International Space Station, it will carry up to four NASA-sponsored crew members and time-critical scientific research. The Starliner has an innovative, weldless structure and is reusable up to 10 times with a six-month turnaround time. It also features wireless internet and tablet technology for crew interfaces. 4)

For NASA service missions to the International Space Station, it will carry up to four NASA-sponsored crew members and time-critical scientific research. The Starliner has an innovative, weldless structure and is reusable up to 10 times with a six-month turnaround time. It also features wireless internet and tablet technology for crew interfaces.

As a 21st century, fully self-flying spacecraft, Starliner will seek out the International Space Station, dock with it, undock and then safely land, all without human intervention. Manual controls, designed in part by Boeing astronaut Chris Ferguson, are always available as a backup, but crew members are intended to be able to enjoy the orbital cruise.

Rendezvous and docking are among the most difficult spaceflight challenges, and starliner does both completely autonomously. Rendezvous procedures start dozens of kilometers away, when Starliner's camera spot the space station as a bright spot of light in front of a sea of stars. Then, an intricate orbital maneuver begins as Starliner drift closer and closer to the station. Hundreds of finely tuned thruster firings then guide Starliner into dock.

CST-100_AutoE

Figure 1: Boeing plans an uncrewed CST-100 Starliner test flight in the fourth quarter of 2019 (image credit: Boeing Corp.)




Development status:

• December 16, 2019: When Boeing’s Orbital Flight Test (OFT) launches on Dec. 20, 2019, it will be a major step toward returning human spaceflight capability to the U.S. 5)

- The uncrewed mission for NASA’s Commercial Crew Program will rendezvous and dock Boeing’s CST-100 Starliner spacecraft with the International Space Station and return to Earth on Dec. 28. Starliner will launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 (SLC-41) at Cape Canaveral Air Force Station in Florida.

- “This test flight will give us valuable data about Starliner’s performance in the actual environment through each phase of flight and demonstrate its capability to transport crew to the space station and bring them home safely,” said Trip Healey, NASA’s mission manager for OFT. “Being on the cusp of this huge moment in history is really exciting.”

CST-100_AutoD

Figure 2: A United Launch Alliance Atlas V rocket, topped by the Boeing CST-100 Starliner spacecraft, stands on Space Launch Complex 41 at Florida’s Cape Canaveral Air Force Station on Dec. 4, 2019. Boeing’s Orbital Flight Test will launch on Dec. 20, 2019 (image credit: Boeing)

- Data from the mission will validate spacecraft system performance and will move Starliner farther down the path toward its first flight with astronauts aboard — Boeing’s Crew Flight Test (CFT).

- NASA astronauts Michael Fincke and Nicole Mann and Boeing astronaut Chris Ferguson will be onboard Starliner for CFT. All three were on hand when the spacecraft for this flight test rolled out of Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on Nov. 21, making the roughly six-mile trek on a transport vehicle to SLC-41 to be mated atop the Atlas V rocket.

- The crew also recently participated in an integrated day of launch test for OFT and witnessed Boeing’s Pad Abort Test. These tests are part of verifying each of Starliner’s systems will function not only separately, but in concert, to protect astronauts on the Crew Flight Test and future missions by carrying them safely away from the launch pad in the unlikely event of an emergency prior to liftoff. For this test without crew members, the abort system will not be active.

- “We’re looking forward to the day when we’re launching people on a regular basis,” said Fincke. “As graduates of military test pilot schools, we are really excited to see how Starliner’s going to behave; we know it’s going to be awesome, and we’re going to get all kinds of really great test data from it.”

- The uncrewed flight test is the culmination of years of ingenuity and perseverance throughout the design, build, and test phases of the program.

- “The most inspiring thing to note through this partnership is how the Boeing, ULA and NASA teams continue to work together to resolve challenges,” Healey said. “There is definitely a team spirit, or esprit de corps, that has helped bring us to this point.”

• December 12, 2019: NASA and Boeing are proceeding with plans for Boeing’s Orbital Flight Test following a full day of briefings and discussion called a Flight Readiness Review that took place at the agency’s Kennedy Space Center in Florida. 6)

- Launch of the CST-100 Starliner spacecraft atop a United Launch Alliance Atlas V rocket is scheduled for 6:36 a.m. EST Friday, Dec. 20, from Space Launch Complex 41 on Cape Canaveral Air Force Station. The uncrewed flight test will be Starliner’s maiden mission to the International Space Station for NASA’s Commercial Crew Program.

- NASA is working with its commercial partners to launch astronauts on American rockets and spacecraft from American soil for the first time since 2011. Safe, reliable and cost-effective human transportation to and from the space station will allow for additional research time and increase the opportunity for discovery aboard humanity’s testbed for exploration.

CST-100_AutoC

Figure 3: Ken Bowersox, deputy associate administrator for Human Exploration and Operations at NASA Headquarters, speaks during the flight readiness review for Boeing’s upcoming Orbital Flight Test in Operations Support Building 2 at NASA’s Kennedy Space Center in Florida, Dec. 12, 2019. Boeing’s CST-100 Starliner spacecraft will launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station. The uncrewed Orbital Flight Test will be the Starliner’s first flight to the International Space Station for NASA’s Commercial Crew Program (photo credit: NASA/Kim Shiflett)

• November 22, 2019: Boeing's CST-100 Starliner spacecraft was transported from NASA's Kennedy Space Center to a facility at Cape Canaveral Air Force Station on Thursday, Nov. 21, 2019. Later in the day it was placed atop a United Launch Alliance Atlas V rocket ahead of Boeing’s uncrewed Orbital Flight Test to the International Space Station. 7)

Boeing’s uncrewed flight test, which is targeted for Dec. 17, will provide valuable data on the end-to-end performance of the rocket, spacecraft and ground systems, as well as, in-orbit and landing operations. The data will be used toward certification of Boeing’s crew transportation system for carrying astronauts to and from the space station.

CST-100_AutoB

Figure 4: The CST-100 Starliner on a flatbed (image credit: NASA)

- NASA’s Commercial Crew Program is working with the American aerospace industry through public-private partnerships to launch astronauts on American rockets and spacecraft from American soil for the first time since 2011. The goal of the program is safe, reliable and cost-effective human space transportation to and from the International Space Station. This could allow for additional research time aboard the station and increase the opportunity for discovery aboard humanity’s testbed for exploration, which includes sending astronauts to the Moon and Mars.

• November 4, 2019: Boeing's CST-100 Starliner spacecraft completed a critical safety milestone on Monday in an end-to-end test of its abort system. The Pad Abort Test took place at Launch Complex 32 at the U.S. Army's White Sands Missile Range in New Mexico. 8) 9)

- The test was designed to verify each of Starliner’s systems will function not only separately, but in concert, to protect astronauts by carrying them safely away from the launch pad in the unlikely event of an emergency prior to liftoff. This was Boeing’s first flight test with Starliner as part of NASA’s Commercial Crew Program to return human spaceflight launches to the International Space Station from American soil.

- “Tests like this one are crucial to help us make sure the systems are as safe as possible,” said Kathy Lueders, NASA’s Commercial Crew Program manager. “We are thrilled with the preliminary results, and now we have the job of really digging into the data and analyzing whether everything worked as we expected.”

CST-100_AutoA

Figure 5: Boeing’s CST-100 Starliner’s four launch abort engines and several orbital maneuvering and attitude control thrusters ignite in the company’s Pad Abort Test, pushing the spacecraft away from the test stand with a combined 160,000 pounds of thrust, from Launch Complex 32 on White Sands Missile Range in New Mexico (image credit: NASA)

- During the test, Starliner’s four launch abort engines, and several orbital maneuvering and attitude control thrusters simultaneously ignited to rapidly push the spacecraft away from the test stand. Five seconds into flight, the abort engines shut off as planned, transferring steering to the control thrusters for the next five seconds.

- A pitcharound maneuver rotated the spacecraft into position for landing as it neared its peak altitude of approximately 4,500 feet. Two of three Starliner’s main parachutes deployed just under half a minute into the test, and the service module separated from the crew module a few seconds later. Although designed with three parachutes, two opening successfully is acceptable for the test parameters and crew safety. After one minute, the heat shield was released and airbags inflated, and the Starliner eased to the ground beneath its parachutes.

- The demonstration took only about 95 seconds from the moment the simulated abort was initiated until the Starliner crew module touched down on the desert ground.

- “Emergency scenario testing is very complex, and today our team validated that the spacecraft will keep our crew safe in the unlikely event of an abort,” said John Mulholland, Vice President and Program Manager, Boeing’s Commercial Crew Program. “Our teams across the program have made remarkable progress to get us to this point, and we are fully focused on the next challenge—Starliner’s uncrewed flight to demonstrate Boeing’s capability to safely fly crew to and from the space station.”

- Boeing’s next mission, called Orbital Flight Test, will launch an uncrewed Starliner spacecraft to the station on a UAL (United Launch Alliance) Atlas V rocket from Cape Canaveral Air Force Station’s Space Launch Complex 41. The launch is targeted for 17 December 2019.

• October 9, 2019: Boeing expects to carry out a pad abort test for its CST-100 Starliner commercial crew vehicle in early November, followed by an uncrewed orbital flight test in mid-December, a company executive said on 8 October. 10)

CST-100_Auto9

Figure 6: Boeing plans to launch its CST-100 Starliner on an uncrewed test flight Dec. 17, while SpaceX will perform an in-flight abort test of its Crew Dragon spacecraft in late November or early December (image credit: Boeing/SpaceX)

- That mission, called the Orbital Flight Test (OFT) by Boeing, will send the Starliner to the International Space Station, docking with the station and remaining there for about a week before undocking and landing at one of several locations in the western United States. Mulholland said that if the mission launches as currently scheduled, the landing would most likely be at White Sands Missile Range in New Mexico.

- Boeing had planned to fly OFT earlier this year, but announced in April it was delaying the launch, then scheduled for May, until later in the summer because of a tight schedule and a conflict with another Atlas 5 launch.

• May 24, 2019: Boeing’s CST-100 Starliner propulsion system was put to the test on Thursday at NASA’s White Sands Test Facility in New Mexico in support of NASA’s Commercial Crew Program. Teams ran multiple tests on Starliner’s in-space maneuvering system and the spacecraft’s launch abort system, which are key elements on the path to restore America’s capability to fly astronauts to the International Space Station on American rockets and spacecraft from U.S. soil. 11)

- The test used a flight-like Starliner service module with a full propulsion system comprising of fuel and helium tanks, reaction control system and orbital maneuvering and attitude control thrusters, launch abort engines and all necessary fuel lines and avionics.

During the test:

a) 19 thrusters fired to simulate in-space maneuvers.

b) 12 thrusters fired to simulate a high-altitude abort.

c) 22 propulsion elements, including the launch abort engines, fired to simulate a low-altitude abort.

- Boeing’s Starliner will launch on a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. The company will complete a Starliner pad abort test and uncrewed flight test, called Orbital Flight Test, to the station ahead of the first flight test with a crew onboard. As commercial crew providers, Boeing and SpaceX, begin to make regular flights to the space station, NASA will continue to advance its mission to go beyond low-Earth orbit and establish a human presence on the Moon with the ultimate goal of sending astronauts to Mars.

CST-100_Auto8

Figure 7: Boeing teams ran multiple tests on Starliner’s in-space maneuvering system and the spacecraft’s launch abort system on 24 May at NASA’s White Sands Test Facility in New Mexico (photo credit: Boeing)

• March 18, 2018: Aerojet Rocketdyne recently completed delivery of all of the crew module engines for Boeing's Crew Space Transportation (CST)-100 Starliner spacecraft. Boeing will integrate the engines into the Starliner crew module at its Commercial Crew and Cargo Processing Facility at NASA's Kennedy Space Center in Florida. 12)

- The Starliner crew module is designed to transport up to seven passengers or a mix of crew and cargo for missions to low-Earth orbit destinations. Developed in partnership with NASA's Commercial Crew Program, the Starliner will carry up to four astronauts to and from the International Space Station for NASA missions.

• January 4, 2018: NASA and industry partners, Boeing and SpaceX, are targeting the return of human spaceflight from Florida’s Space Coast in 2018. Both companies are scheduled to begin flight tests to prove the space systems meet NASA’s requirements for certification in the coming year. 13)

- Since NASA awarded contracts to Boeing and SpaceX, the companies have matured space system designs and now have substantial spacecraft and launch vehicle hardware in development and testing in preparation for the test flights. The goal of the Commercial Crew Program is safe, reliable and cost-effective transportation to and from the International Space Station from the United States through a public-private approach. NASA, Boeing and SpaceX have significant testing underway, which will ultimately lead to test missions when the systems are ready and meet safety requirements.

- Boeing’s Starliner will launch on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 and SpaceX’s Crew Dragon will launch on the company’s Falcon 9 rocket from Launch Complex 39A.

- After completion of each company’s uncrewed and crewed flight tests, NASA will review the flight data to verify the systems meet the requirements for certification. Upon NASA certification, the companies are each slated to fly six crew missions to the International Space Station beginning in 2019 and continuing through 2024.

- Spacecraft: In 2018, Boeing will continue with the production and outfitting of three crew modules and multiple service modules inside the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida. Boeing already has a structural version of its spacecraft going through loads, shock and separation test events in Huntington Beach, California. It will conduct a series of service module hot-fire tests in White Sands, New Mexico, as well as environmental testing to include thermal, vacuum and electromagnetic frequency in El Segundo, California.

- Spacesuit: Boeing’s spacesuit will continue to undergo integrated system verification tests. These include environmental control and life support system testing, immersing the suit in water, egress demos with the aid of virtual reality, suited launch and landing cabin operations, prelaunch emergency exit with ground crews, ascent simulations with mission operations teams and post-landing egress.

- Engine Testing: Boeing and Aerojet Rocketdyne will finish qualification testing of the launch abort engines and thrusters that will power the Starliner through the pad abort, uncrewed and crew flight tests. Each of the four launch abort engines and 48 thrusters is tested at the White Sands Test Facility in New Mexico prior to installation on the service module.

- Parachute Testing: Boeing will continue with the Starliner’s parachute test program in 2018. To date, Boeing has completed two of five planned qualification tests. The testing involves a giant helium-filled balloon that lifts a full-size version of the spacecraft over the desert in New Mexico before releasing it. The spacecraft climbs more than 300 m per minute before it is dropped from an altitude of about 12 km. A choreographed parachute deployment sequence initiates, involving two drogue, three pilot and three main chutes that slow the spacecraft enough for a safe touchdown on land. Additional parachute testing with a long-dart shaped vehicle released from a C-17 aircraft near Yuma, Arizona, is also scheduled to begin next year.

- Pad Abort Test: In 2018, Boeing will complete an uncrewed pad abort test at White Sands Missile Range in New Mexico to demonstrate the ability of the Starliner to safely accomplish an emergency escape of the capsule and its crew members from a rocket. During the test, four launch abort engines and 20 orbital maneuvering engines will fire to simulate an abort from the Atlas V rocket on the launch pad. Together, the engines produce about 188,000 pounds of thrust for about six seconds to push the spacecraft to one mile in altitude to clear the launch vehicle in an emergency. At the proper time in the abort sequence, the service module will separate from the crew module so that it can parachute down to a safe landing.

- Orbital Flight Test: Following launch from Space Launch Complex 41, the uncrewed Starliner will dock to the International Space Station. After about two weeks connected to the station during which the teams will gather extensive performance data, the spacecraft will return to Earth under parachutes to land in the Western United States. The test will demonstrate the launch vehicle, Starliner, the ground system and the Boeing team are ready to perform a crew flight test.

- Crew Flight Test: Two crew members will be aboard the Starliner for Boeing’s first commercial spaceflight to the International Space Station. The spacecraft will launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 and land again in the western United States. The mission will represent a major milestone in the return of human spaceflight from the United States. After the test and NASA certification, Boeing’s Starliner can begin regularly flying astronauts to and from the space station on NASA missions.

- Recovery Training: Boeing, NASA, and the Department of Defense will conduct rehearsals of crew recovery training during the coming year. The final full scale rehearsal tests will simulate astronaut returns to Earth in the Western region of the United States. Boeing’s Starliner is designed to land on land, but testing is also being conducted to prepare for water landings in case of an emergency.


Launch: The uncrewed Boeing Starliner spacecraft lifted off aboard a ULA Atlas V rocket on Dec. 20, 2019 at 6:36 a.m. EST (11.36 UTC), from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida on a flight test to the International Space Station. The Starliner did not reach the planned orbit and will not dock to the space station. Teams worked quickly to ensure the spacecraft was in a stable orbit and preserved enough fuel to ensure a landing opportunity. Boeing, in coordination with NASA, is working to return Starliner to land in White Sands, New Mexico on Sunday, Dec. 22. 14)

CST-100_Auto7

Figure 8: The United Launch Alliance Atlas V rocket, topped by the Boeing CST-100 Starliner spacecraft, stands on the launch pad at Space Launch Complex 41 at Florida’s Cape Canaveral Air Force Station on Friday, 6 Deccember, during a wet dress rehearsal for Boeing’s Orbital Flight Test (image credit: NASA)

Orbit: Near circular orbit, altitude of ~400 km, inclination = 51.6º.

CST-100_Auto6

Figure 9: A United Launch Alliance Atlas 5 lifts off Dec. 20 carrying Boeing's CST-100 Starliner on an uncrewed test flight to the International Space Station (image credit: NASA, Joel Kowsky)

• December 20, 2019: The Starliner spacecraft separated from the Centaur nearly 15 minutes after liftoff, having been placed into a suborbital trajectory designed to permit safe aborts for the Starliner during ascent. Four orbital maneuvering and attitude control thrusters on the Starliner were scheduled to fire 31 minutes after liftoff to put the spacecraft into an initial orbit. 15)

- However, that burn did not take place as planned. NASA and Boeing commentators said the spacecraft suffered an “off-nominal” orbital insertion and was in a “stable” orbit with electrical power, but didn’t specify the orbital parameters. Spacecraft controllers “are assessing options,” they said.

- “Boeing’s CST-100 Starliner is not in its planned orbit. The spacecraft currently is in a stable configuration while flight controllers are troubleshooting,” NASA said in a brief statement. NASA Administrator Jim Bridenstine tweeted that a thruster burn did not take place but that the spacecraft was in a stable orbit.

- Bridenstine later tweeted that the problem was a “Mission Elapsed Time (MET) anomaly” with Starliner, “causing the spacecraft to believe that it was in an orbital insertion burn, when it was not.” The spacecraft, he said, consumed more fuel than expected, precluding a docking with the International Space Station.

- This mission, formally unknown as Orbital Flight Test (OFT), is a key test of the spacecraft before carrying people, and is similar to the Demo-1 mission that SpaceX’s Crew Dragon spacecraft flew in March. A successful OFT would allow a crewed flight to take place some time in 2020, although both NASA and Boeing officials have been hesitant to estimate a more precise date until after the OFT mission ends.

December 22, 2019: In retrospect, it was discovered that the capsule started its flight with an 11-hour error in its mission elapsed timer setting, triggering a cascading series of problems that led to the Starliner burning too much fuel to reach the space station and deliver its cargo. 16)

Mission control uplinked commands for the spacecraft to perform a series of burns with its smaller thrusters to reach a stable, but unplanned orbit, but the ship was no longer in a position to reach the space station.

Hence, the unpiloted demonstration flight of Boeing’s Starliner crew capsule ended prematurely on Sunday (Dec. 22) with a smooth airbag-cushioned predawn landing in New Mexico after a timing glitch prevented it from docking with the International Space Station, leaving some test objectives incomplete as NASA begins analyzing data to determine if astronauts should fly on the next Starliner mission.




NASA, Boeing Complete Successful Landing of Starliner Flight Test — and Inspection

• February 7, 2020: Following the anomaly that occurred during the December Boeing Starliner Orbital Fight Test (OFT), NASA and Boeing formed a joint investigation team tasked with examining the primary issues, which occurred during that test. Those issues included three specific concerns revealed during flight: 17)

1) An error with the Mission Elapsed Timer (MET), which incorrectly polled time from the Atlas V booster nearly 11 hours prior to launch.

2) A software issue within the Service Module (SM) Disposal Sequence, which incorrectly translated the SM disposal sequence into the SM Integrated Propulsion Controller (IPC).

3) An Intermittent Space-to-Ground (S/G) forward link issue, which impeded the Flight Control team’s ability to command and control the vehicle.

- The joint investigation team convened in early January and has now identified the direct causes and preliminary corrective actions for the first two anomalies. The intermittent communications issues still are under investigation. NASA reviewed these results on Friday, Jan. 31 along with multiple suggested corrective actions recommended by the team. While NASA was satisfied that the team had properly identified the technical root cause of the two anomalies, they requested the team to perform a more in-depth analysis as to why the anomalies occurred, including an analysis of whether the issues were indicative of weak internal software processes or failure in applying those processes. The team is in the process of performing this additional analysis, as well as continuing the investigation of the intermittent communications issues. NASA briefed the Aerospace Safety Advisory Panel on the status of the investigation this week.

- Regarding the first two anomalies, the team found the two critical software defects were not detected ahead of flight despite multiple safeguards. Ground intervention prevented loss of vehicle in both cases. Breakdowns in the design and code phase inserted the original defects. Additionally, breakdowns in the test and verification phase failed to identify the defects preflight despite their detectability. While both errors could have led to risk of spacecraft loss, the actions of the NASA-Boeing team were able to correct the issues and return the Starliner spacecraft safely to Earth.

- There was no simple cause of the two software defects making it into flight. Software defects, particularly in complex spacecraft code, are not unexpected. However, there were numerous instances where the Boeing software quality processes either should have or could have uncovered the defects. Due to these breakdowns found in design, code and test of the software, they will require systemic corrective actions. The team has already identified a robust set of 11 top-priority corrective actions. More will be identified after the team completes its additional work.

- The joint team made excellent progress for this stage of the investigation. However, it’s still too early for us to definitively share the root causes and full set of corrective actions needed for the Starliner system. We do expect to have those results at the end of February, as was our initial plan. We want to make sure we have a comprehensive understanding of what happened so that we can fully explain the root causes and better assess future work that will be needed. Most critically, we want to assure that these necessary steps are completely understood prior to determining the plan for future flights. Separate from the anomaly investigation, NASA also is still reviewing the data collected during the flight test to help determine that future plan. NASA expects a decision on this review to be complete in the next several weeks.

- NASA and Boeing are committed to openly sharing the information related to the mission with the public. Thus, NASA will be holding a media teleconference at 3:30 p.m. EST Friday, Feb. 7.

- In addition to these reviews, NASA is planning to perform an Organizational Safety Assessment of Boeing’s work related to the Commercial Crew Program. The comprehensive safety review will include individual employee interviews with a sampling from a cross section of personnel, including senior managers, mid-level management and supervision, and engineers and technicians at multiple sites. The review would be added to the company’s Commercial Crew Transportation Capability contract. NASA previously completed a more limited review of the company. The goal of the Organizational Safety Assessment will be to examine the workplace culture with the commercial crew provider ahead of a mission with astronauts.

- Boeing’s Orbital Flight test launched on Friday, Dec. 20, on United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The mission successfully landed two days later on Sunday, Dec. 22, completing an abbreviated test that performed several mission objectives before returning to Earth as the first orbital land touchdown of a human-rated capsule in U.S. history.

• January 15, 2020: While NASA and Boeing engineers investigate the cause of a software error that cut short the first orbital test flight of the Starliner crew capsule last month, ground teams have returned the spaceship from its landing site in New Mexico back to the Kennedy Space Center in Florida. 18)

- Preliminary inspections indicate the reusable spacecraft weathered its first trip into orbit better than expected, and Boeing teams are confident the ship will need only “minimal refurbishment” before its next launch with astronauts.

- While teams sort out the Starliner software problem, Boeing says the hardware performed as designed.

- “It’s in really good shape, very little external wear on the outside,” said Tim Reith, spacecraft engineering manager for Boeing’s Starliner program.

- “The team built an awesome vehicle,” said Ramon Sanchez, senior operations lead for Boeing’s commercial crew program.

- “For the most part, the vehicle performed very well, and we’re looking at minimal refurbishment to return this thing to flight,” Sanchez told reporters Wednesday during a media briefing inside Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida.

- The capsule landed on 22 December 2019 at White Sands Space Harbor in New Mexico, descending under parachutes before deploying airbags to cushion its touchdown in the remote desert. The unpiloted Orbital Test Flight lifted off Dec. 20 aboard a United Launch Alliance Atlas 5 rocket from Cape Canaveral, but a timing error in the Starliner’s software that went undiscovered before launch caused the spacecraft to miss a planned orbital insertion burn.

- The insertion burn was planned a few minutes after the Atlas 5’s Centaur upper stage deployed the Starliner spacecraft on a trajectory with a velocity just shy of that needed to enter a stable orbit. The Atlas 5 put the Starliner where it needed to be, and the Boeing capsule’s orbital maneuvering rockets were supposed to ignite to boost the spaceship into a preliminary orbit to begin its pursuit of the space station.

- But an on-board mission elapsed timer had a wrong setting, causing the Starliner spacecraft’s computers to believe the capsule was operating in a different phase of its mission. The capsule’s service module began firing maneuvering thrusters to control the vehicle’s pointing, consuming much of the craft’s fuel and causing it to miss the automated orbit insertion burn.

- The spacecraft was trying to perform two functions at the same time time, Reith said.

- “That’s where the vehicle got a little confused,” he said. “The orbit insertion, which the vehicle thought had already happened in the past, it was trying to prepare for that, as well as do some pointing guidance, and those two events were kind of in conflict with each other.

CST-100_Auto5

Figure 10: Boeing’s first space-ready Starliner crew capsule, named Calypso, is back inside the company’s assembly facility at the Kennedy Space Center in Florida after a two-day orbital test flight in December (image credit: Stephen Clark / Spaceflight Now)

- “That’s were we had the vehicle kind of fighting itself, if you will, and the thruster firings going,” Reith said. “You’ve got multiple software sequences running, so that’s where it got confused with multiple things going on at the same time.

- Ground controllers noticed the problem and tried to intervene, but commands to override the Starliner’s automation did not reach the spacecraft in time to perform the planned orbit insertion burn and keep the mission on track to dock with the International Space Station.

- “Everything’s automated, so the vehicle should have started moving itself toward this orbit insertion burn,” Reith said. “When that wasn’t happening, the flight control team in Houston and the engineering support teams around the country, we were able to figure that out pretty quick.

- “It was very intense,” said Reith, who also served as spacecraft chief engineer in the Starliner mission support room during last month’s mission. “You also have to remember this was the first time we’d seen it fly, so you have an expectation of what should happen, but at the same time you’re not sure what it’s going to do. So as you’re seeing things for the first time, you’re trying to understand is that what it should be doing, or is there something anomalous going on?”

- “Essentially, there are two opportunities for us to prepare for that orbit insertion burn,” he said. “When the first opportunity missed, and at the same time we were watching the telemetry from the vehicle with a lot of thruster firings, you start realizing, OK, something’s not right. So the flight control team attempted to send commands, and the vehicle wasn’t in a really good orientation from an antenna standpoint to receive those commands. So it kind of went on for a while until we got the antennas where we could get a good command to the vehicle. Once we got that command uplinked, we were able to turn the vehicle and do that orbit insertion burn that at least raised it up a little bit. But by that time we had expended a lot of propellant.”

- Instead of performing the pre-programmed insertion burn, the Starliner fired its engines to reach a stable orbit that ensured the capsule could safely return to Earth. By that time, the capsule had consumed too much propellant to complete the required burns to pursue the space station and perform a docking.

- “We had full control of the vehicle,” Reith said. “It didn’t tumble or anything like that.”

- The original eight-day flight plan, which included demonstration maneuvers and a docking with the space station, was shortened to two days. The capsule successfully landed in New Mexico, achieving many — but not all — of the planned objectives of Boeing’s Orbital Flight Test.

- The demonstration mission was a precursor to the first planned Starliner mission with astronauts — known as the Crew Flight Test — scheduled to launch later this year.

CST-100_Auto4

Figure 11: An instrumented flight test dummy, nicknamed Rosie after the iconic World War II character “Rosie the Riveter,” remains in her seat inside the Starliner spacecraft after a two-day mission in Earth orbit (image credit: Stephen Clark / Spaceflight Now)

- Boeing technicians are assembling a separate Starliner spacecraft for the CFT (Crew Flight Test). Located in an integration cell just a stone’s throw away from the Starliner that just returned from space, the CFT capsule will carry Boeing astronaut Chris Ferguson and NASA crewmates Mike Fincke and Nicole Mann to the space station.

- Boeing has produced two reusable human-rated spaceships — each designed for 10 missions — for flights to the space station under a $4.2 billion contract with NASA. The space agency has signed a similar $2.6 billion contract with SpaceX in 2014 for development of the Crew Dragon spacecraft, on which astronauts will fly new vehicles on each mission.

- The CFT mission with Ferguson’s crew will pave the way for operational crew rotation flights to the station, the first of which will be commanded by NASA astronaut Suni Williams, a veteran of two long-duration space station expeditions. Williams is slated to launch and land on the same capsule that flew on last month’s two-day demonstration mission.

- She named the spacecraft “Calypso” after its Dec. 22 landing in honor of the research vessel used by French explorer Jacques Cousteau.

- The planned Starliner flight sequence hinges on the outcome of an investigation into the cause of the software error that prevented the Calypso spacecraft from docking with the space station last month.

- “The independent team will inform NASA and Boeing on the root cause of the mission elapsed timer anomaly and any other software issues and provide corrective actions needed before flying crew to the International Space Station for the agency’s Commercial Crew Program,” wrote NASA Administrator Jim Bridenstine on the space agency’s website Jan. 7.

- The investigation is expected to last about two months, according to Bridenstine.

- The NASA boss said agency officials are evaluating data from the Starliner’s Orbital Flight Test to determine if another unpiloted demonstration flight is required before the capsule is cleared to launch with astronauts. A decision on that matter is not expected for several weeks, Bridenstine wrote.

- ”Although docking was planned, it may not have to be accomplished prior to the crew demonstration,” he wrote. “Boeing would need NASA’s approval to proceed with a flight test with astronauts on-board.”

- After the Starliner’s landing Dec. 22, Boeing teams secured the spacecraft and transported it via truck from New Mexico back to the Kennedy Space Center, where it arrived Jan. 8.

- “Currently, it’s under assessment by ... many of our experts,” Sanchez said Wednesday. “We have got the hatch door open. We will take an assessment of the exterior of the vehicle.

- “We have to make sure the interior is flight-ready,” Sanchez said. “It’s an awesome vehicle, well-built with safety and quality in mind.”

- The Starliner spacecraft includes two segments — a crew module and a service module — for the trip to the International Space Station. After departing the station and performing a braking burn to re-enter the atmosphere, the crew module jettisons the service module to burn up over the Pacific Ocean.

- The crew module is fitted with an ablative base heat shield, thermal tiles, and protective blankets to withstand the scorching temperatures as hot as 3,000º Fahrenheit (1,650º Celsius) during re-entry. The capsule jettisons a forward heat shield at the start of its parachute deployment sequence, then releases the base heat shield to plunge to the ground, allowing airbags to inflate to soften the crew module’s landing.

- That means each Starliner mission will fly with a new service module, and new forward and base heat shield elements. Teams will also have to re-pack parachutes and replace the mortars that fire to unfurl the chutes during descent, and an ascent fairing that covers the Starliner docking module will also come new with each mission, according to Sanchez.

- According to Reith, a manager on the Starliner engineering team, the reusable thermal blankets on the “backshell” panels around the circumference of the Starliner spacecraft showed little sign of damage from the re-entry.

- “You can see on the front — the hot side or leading edge side of the vehicle where the tiles are — you see a little deposit there,” Reith said. “We’ll go through and clean that up,” Reith said. “That should come right off.

- “There’s a dark diagonal stripe up the vehicle,” Reith told reporters Wednesday. “There’s a matching one on the other side. That’s where the plasma flow is. It comes around the vehicle ... So as it was picking up ablation off the base heat shield, it streaked up there and left that deposit.

- “We’ve got high expectation that’s going to come right off, so we’ll be able to clean this vehicle up and get it to near factory-fresh (condition) again for its next mission” Reith said.

- “Right now, the team is doing their external inspections,” Reith said. “We’ve had teams in looking at the top where the NASA docking system is. They’ve done all their inspections looking at that, and also the thermal protection system team, they’ve been looking at the blankets, the tiles we have.

- “Once they’re done with their work, we’ll go ahead and take the backshell panels off,” he said. “These are the gray panels that enclose all of the equipment inside .... Then we’ll start doing our inspections on the inside. At the same time we’ll be starting to take the cargo (that was to be delivered to the space station) off, Rosie will come off, and then we’ll start our refurbishment of the inside of the vehicle getting ready for the next mission.”

- Reith said Boeing teams will also remove the airbags from the bottom of the crew module to check for damage. The airbags are also designed to be reused on future flights.

- “It looks really clean from a standpoint of the wear-and-tear it took coming through re-entry,” Reith said. “Our TPS (Thermal Protection System) team is really, really surprised. They expected more blanket wear, more deposits. They’re really happy with the way the vehicle performed.”

• January 7, 2020: NASA and Boeing are in the process of establishing a joint, independent investigation team to examine the primary issues associated with the company’s uncrewed Orbital Flight Test. 19)

The independent team will inform NASA and Boeing on the root cause of the mission elapsed timer anomaly and any other software issues and provide corrective actions needed before flying crew to the International Space Station for the agency’s Commercial Crew Program. The team will review the primary anomalies experienced during the Dec. 2019 flight test, any potential contributing factors and provide recommendations to ensure a robust design for future missions. Once underway, the investigation is targeted to last about two months before the team delivers its final assessment.

In parallel, NASA is evaluating the data received during the mission to determine if another uncrewed demonstration is required. This decision is not expected for several weeks as teams take the necessary time for this review. NASA’s approach will be to determine if NASA and Boeing received enough data to validate the system’s overall performance, including launch, on-orbit operations, guidance, navigation and control, docking/undocking to the space station, reentry and landing. Although data from the uncrewed test is important for certification, it may not be the only way that Boeing is able to demonstrate its system’s full capabilities.

In parallel, NASA is evaluating the data received during the mission to determine if another uncrewed demonstration is required. This decision is not expected for several weeks as teams take the necessary time for this review. NASA’s approach will be to determine if NASA and Boeing received enough data to validate the system’s overall performance, including launch, on-orbit operations, guidance, navigation and control, docking/undocking to the space station, reentry and landing. Although data from the uncrewed test is important for certification, it may not be the only way that Boeing is able to demonstrate its system’s full capabilities.

Starliner currently is being transported from the landing location near the U.S. Army’s White Sands Missile Range to the company’s Commercial Crew and Cargo Processing Facility in Florida. Since landing, teams have safed the spacecraft for transport, downloaded data from the spacecraft’s onboard systems for analysis and completed initial inspections of the interior and exterior of Starliner. A more detailed analysis will be conducted after the spacecraft arrives at its processing facility.

Boeing’s Orbital Flight test launched on Friday, Dec. 20, on United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The mission successfully landed two days later on Sunday, Dec. 22, completing an abbreviated test that performed several mission objectives before returning to Earth as the first orbital land touchdown of a human-rated capsule in U.S. history.

CST-100_Auto3

Figure 12: File image of the Boeing Starliner after landing being safed for transportation. The independent team will inform NASA and Boeing on the root cause of the mission elapsed timer anomaly and any other software issues and provide corrective actions needed (image credit: NASA)

• December 22, 2019: Boeing’s CST-100 Starliner spacecraft completed the first land touchdown of a human-rated capsule in U.S. history Sunday at White Sands Space Harbor in New Mexico, wrapping up the company’s uncrewed Orbital Flight Test as part of NASA’s Commercial Crew Program. 20)

Starliner settled gently onto its airbags at 7:58 a.m. EST (5:58 a.m. MST) in a pre-dawn landing that helps set the stage for future crewed landings at the same site. The landing followed a deorbit burn at 7:23 a.m., separation of the spacecraft’s service module, and successful deployment of its three main parachutes and six airbags.

CST-100_Auto2

Figure 13: The Boeing CST-100 Starliner spacecraft is seen after it landed in White Sands, New Mexico, Sunday, Dec. 22, 2019. The landing completes an abbreviated Orbital Flight Test for the company that still meets several mission objectives for NASA’s Commercial Crew program. The Starliner spacecraft launched on a United Launch Alliance Atlas V rocket at 6:36 a.m. Friday, Dec. 20 from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida (image credit: NASA, Bill Ingalls)

“Congratulations to the NASA and Boeing teams on a bullseye landing of the Starliner. The hardest parts of this orbital flight test were successful,” said NASA Administrator Jim Bridenstine. “This is why we conduct these tests, to learn and improve our systems. The information gained from this first mission of Starliner will be critical in our efforts to strengthen NASA’s Commercial Crew Program and return America’s human spaceflight capability.”

Although Starliner did not reach its planned orbit and dock to the International Space Station as planned, Boeing was able to complete a number of test objectives during the flight related to NASA’s Commercial Crew Program, including:

• Successful launch of the first human-rated United Launch Alliance (ULA) Atlas V rocket

• Checked out the Starliner propulsion systems

• Tested space-to-space communications

• Confirmed Starliner tracker alignments using its navigation system

• Tested Starliner’s NASA Docking System

• Validated all environment control and life support systems

• Completed a positive command uplink between the International Space Station and Starliner.

“Today’s successful landing of Boeing’s CST-100 Starliner spacecraft is a testament to the women and men who have dedicated themselves to ensuring Starliner can safely transport crews to low-Earth orbit and back to Earth,” said Boeing Senior Vice President of Space and Launch Jim Chilton. “The Starliner Orbital Flight Test has and will continue to provide incredibly valuable data that we, along with the NASA team, will use to support future Starliner missions launched from and returning to American soil.”

“This mission has only strengthened the resolve of the NASA, ULA, and Boeing teams," said NASA Deputy Administrator Jim Morhard. "Systems were tested, but more importantly the teams were tested. The hardest parts of this mission were a tremendous success. The Commercial Crew Program is strong. But keep in mind, this is a great reminder that human exploration is not for the faint of heart. We are just getting started!”

The Starliner that landed today will be refurbished for Boeing’s first operational crewed mission, following the Crew Flight Test. NASA astronaut Suni Williams, who will fly on that mission, dubbed the spacecraft “Calypso” after the ship of famed explorer Jacques Cousteau.

“I love what the ocean means to this planet,” said Williams. “We would not be this planet without the ocean. There’s so much to discover in the ocean, and there’s so much to discover in space.”

The uncrewed Starliner spacecraft launched on the ULA Atlas V rocket at 6:36 a.m. Friday, Dec. 20, from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

CST-100_Auto1

Figure 14: The Boeing CST-100 Starliner spacecraft lands in White Sands, New Mexico, Sunday, Dec. 22, 2019 (photo credit:(NASA, Aubrey Gemignani)

CST-100_Auto0

Figure 15: Boeing’s Starliner spacecraft descends under three red, white and blue main parachutes toward landing at White Sands Space Harbor, New Mexico (photo credit: NASA, Aubrey Gemignani) 21)

Starliner settled gently onto its air bags at 7:58 a.m. EST in a pre-dawn landing that helps set the stage for future crewed landings at the same site. The landing followed a deorbit burn at 7:23 a.m., separation of the spacecraft’s service module, and successful deployment of its three main parachutes and six airbags.



1) “NASA's Management of the Commercial Crew Program,” NASA, Report NO. IG-14-001 (Assignment NO. A-12-024-01), Nov. 13, 2013, URL: http://oig.nasa.gov/audits/reports/FY14/IG-14-001.pdf

2) Joshua Buck, Stephanie Martin, “NASA and Industry Complete First Phase to Certify New Crew Transportation Systems,” NASA, Release 14-148, May 30, 2014, URL: http://www.nasa.gov
/press/2014/may/nasa-and-industry-complete-first-phase-to-certify-new-crew-transportation-systems/

3) Stephanie Schierholz, Stephanie Martin, “NASA Chooses American Companies to Transport U.S. Astronauts to International Space Station,” NASA, Release 14-256, Sept. 16, 2014, URL: http://www.nasa.gov/press/2014/september
/nasa-chooses-american-companies-to-transport-us-astronauts-to-international/

4) ”CST-100 Starliner - A 21st Century Space Capsule,”Boeing, 2019, URL: https://www.boeing.com/space/starliner/

5) Jim Cawley, ”Boeing and NASA Approach Milestone Orbital Flight Test,” NASA, 16 December 2019, URL: https://www.nasa.gov/feature/boeing-and-nasa-approach-milestone-orbital-flight-test

6) Linda Herridge, ”Flight Readiness Concludes for Boeing’s Orbital Flight Test,” NASA Commercial Crew Program, 12 December 2019, URL: https://blogs.nasa.gov
/commercialcrew/2019/12/12/flight-readiness-concludes-for-boeings-orbital-flight-test/

7) ”Boeing Starliner Crew Spacecraft Heads to Pre-Launch Processing,” NASA, 22 November 2019, URL: https://www.nasa.gov/image-feature
/boeing-starliner-crew-spacecraft-heads-to-pre-launch-processing

8) ”Boeing's Starliner Completes Pad Abort Test for Commercial Crew,” NASA Press Release, 4 November 2019, URL: https://www.nasa.gov/press-release
/boeing-s-starliner-completes-pad-abort-test-for-commercial-crew

9) ”Boeing tests space crew capsule, reports problem with parachute,” Space Daily, 5 November 2019, URL: http://www.spacedaily.com/reports
/Boeing_tests_space_crew_capsule_reports_problem_with_parachute_999.html

10) Jeff Foust, ”Boeing, SpaceX press towards commercial crew test flights this year,” Space News, 9 October 2019, URL: https://spacenews.com
/boeing-spacex-press-towards-commercial-crew-test-flights-this-year/

11) James Cawley, ”Boeing Completes Starliner Hot Fire Test,” NASA Commercial Crew Program, 24 May 2019, URL: https://blogs.nasa.gov/commercialcrew/tag/cst-100-starliner/

12) ”Aerojet Rocketdyne Ships Starliner Re-entry Thrusters,” Space Daily, 18 March 2018, URL: http://www.spacedaily.com/reports/Aerojet_Rocketdyne_Ships_Starliner_Re_entry_Thrusters_999.html

13) ”NASA Commercial Crew Program Mission in Sight for 2018,” NASA, 4 Jan. 2018, URL: https://www.nasa.gov/image-feature/boeing-cst-100-starliner-in-space

14) ”NASA Live: Boeing Starliner Orbital Flight Test,” NASA, 20 December 2019, URL: https://www.nasa.gov/nasalive

15) Jeff Foust, ”Starliner suffers “off-nominal” orbital insertion after launch,” SpaceNews, 20 December 2019, URL: https://spacenews.com/starliner-suffers-off-nominal-orbital-insertion-after-launch/

16) Stephen Clark, ”Boeing’s Starliner capsule lands after missing rendezvous with space station,” Spaceflight Now, 22 December 2019, URL: https://spaceflightnow.com/2019/12/22
/boeings-starliner-capsule-safely-lands-after-missing-rendezvous-with-space-station/

17) ”NASA Shares Initial Findings from Boeing Starliner Orbital Flight Test Investigation,” NASA Commercial Crew Program, 7 February 2020, URL: https://blogs.nasa.gov/commercialcrew/2020/02/07
/nasa-shares-initial-findings-from-boeing-starliner-orbital-flight-test-investigation/

18) Stephen Clark, ”Boeing expects ‘minimal refurbishment’ on reusable Starliner crew capsule,” Spaceflight Now, 15 January 2020, URL: https://spaceflightnow.com/2020/01/15
/boeing-to-perform-minimal-refurbishment-on-reusable-starliner-crew-capsule/

19) Marie Lewis, ”NASA update on Boeing’s Orbital Flight Test,” NASA, Commercial Crew Program, 7 January, 2020, URL: https://blogs.nasa.gov
/commercialcrew/2020/01/07/nasa-update-on-boeings-orbital-flight-test/

20) Josh Finch, Stephanie Schierholz, Dan Huot, ”NASA, Boeing Complete Successful Landing of Starliner Flight Test,” NASA Release 19-101, 22 December 2019, URL: https://www.nasa.gov
/press-release/nasa-boeing-complete-successful-landing-of-starliner-flight-test

21) Mark Garcia, ”Boeing’s Starliner Spacecraft Touches Down in New Mexico,” NASA, 22 December 2019, URL: https://blogs.nasa.gov/spacestation/2019/12/22
/boeings-starliner-spacecraft-touches-down-in-new-mexico/



The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: ”Observation of the Earth and Its Environment: Survey of Missions and Sensors” (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (herb.kramer@gmx.net).

Launch    Flight Test    References    Back to top