Minimize ExoMars 2022

ExoMars 2022 Mission (formerly ExoMars 2020)

Concept    Launch   Development Status    Payloads   References   

The ExoMars program, consisting of two missions, is the first step of ESA's Aurora Exploration Program and is developed in a broad ESA and Roscosmos cooperation, with a contribution from NASA in the areas of Mars proximity Communications and the scientific payloads. It addresses the scientific question of whether life ever existed on Mars and will demonstrate key technologies for entry, descent, landing, drilling and roving on the Martian surface. 1) 2)

The 2020 mission of the ExoMars program will deliver a European rover and a Russian surface platform to the surface of Mars. A Proton rocket will be used to launch the mission, which will arrive to Mars after a nine-month journey. The ExoMars rover will travel across the Martian surface to search for signs of life. It will collect samples with a drill and analyse them with next-generation instruments. ExoMars will be the first mission to combine the capability to move across the surface and to study Mars at depth. 3)

During launch and cruise phase, a carrier module (provided by ESA) will transport the surface platform and the rover within a single aeroshell. A descent module (provided by Roscosmos with some contributions by ESA) will separate from the carrier shortly before reaching the Martian atmosphere. During the descent phase, a heat shield will protect the payload from the severe heat flux. Parachutes, thrusters, and damping systems will reduce the speed, allowing a controlled landing on the surface of Mars.

The ExoMARS 2020 Program will secure the development and qualification of the following technologies:

• Entry, Descent and Landing (EDL) of a payload on the surface of Mars

• Surface mobility with a Rover

• Access to the sub-surface to acquire and analyze in-situ Mars terrain samples

• Qualification of Russian ground-based means for deep-space communication in cooperation with ESA’s ESTRACK

• Adaptation of Russian on-board computer for deep space missions and ExoMars landed operations

• Development and qualification of throttleable braking engines for prospective planetary landing missions.

The above activities will be carried out in accordance with the ESA Policy on Planetary Protection, which complies with the COSPAR planetary protection recommendations.

The ExoMars Program scientific objectives are to:

• Search for signs of past and present life on Mars

• Investigate the water/geochemical environment as a function of depth in the shallow subsurface

• Investigate Martian atmospheric trace gases and their sources

• Investigate and solve scientific problems within the composition of Mars Surface long-living stationary platform.

A further objective of the ExoMars Program is to provide data relay services, through the TGO (Trace Gas Orbiter), for landed assets on the surface of Mars until the end of 2022.

All these objectives will be pursued as part of a broad international cooperation with Roscosmos and NASA, having as long-term goal an international Mars sample return mission.

The two ExoMars missions are foreseen, respectively, for 2016 (launched from Baikonur on March 14th, 2016) and July-August 2020.

The RSP (Rover and Surface Platform) mission of the ExoMars program of ESA, planned for launch in 2020, will deliver a European ExoMars Rover and a Russian Surface Platform to the surface of Mars. The primary objective is to land the rover at a site with high potential for finding well-preserved organic material, particularly from the very early history of the planet.




ExoMars RSP (Rover and Surface Platform)mission and system concept

The ExoMars RSP mission is foreseen to be launched into a direct transfer to Mars in July 2020. The transfer is ballistic; there are no deterministic Deep Space Maneuvers (DSM), only stochastic navigation maneuvers, some of which have a deterministic component for planetary protection reasons (Ref. 1). 4) 5) 6) 7) 8)

In the current mission design, the launch period for 2020 has a duration of 20 days. Out of these 20 days, with the six allocated Proton-M/Breeze-M launcher programs, it will be possible to have at least six days of launchability within the launch period arranged in groups of two: two days at the start, two in the middle and two at the end of the launch period. The days in between are gaps of non-launchability.

All dates in a given launch period lead to arrival on the same date, fixed on 19 March 2021. This simplifies operations planning and ground station booking, though it also removes one degree of freedom from the trajectory design.

The 2.9 ton SCC ( SpaceCraft Composite), developed by Thales Alenia Space in Italy under ESA contract, is composed of a CM (Carrier Module) and a 2 ton DM (Descent Module) provided by Roscosmos of Russia, which carries the 350 kg RM (Rover Module), also provided by ESA.

Industrial consortium: On the 2020 mission, Thales Alenia Space in Italy, is in charge of the design, development and verification of the entire system, the development of the Carrier Module navigation and guidance system and perform EDL/GNC development, the Rover System, including the Analytical Laboratory Drawer (ALD) as well as supplying basic parts of the DM, including the Radar Altimeter. In addition, Thales Alenia Space in Italy implements a deep technical partnership with Lavochkin for the development of the Descent Module (DM). OHB is in charge to develop the CM as well as ALD SPDS Mechanism and delegated tasks, the Rover Vehicle itself is provided by Airbus Defence and Space in UK. Leonardo is developing the ExoMars 2020 drill, which will dig into the Mars subsoil to a depth of two meters and ALTEC (Aerospace Logistics Technology Engineering), a Thales Alenia Space in Italy (63.75%) and ASI (36.25%) company – will also be responsible for the design, development and maintenance of the ROCC (Rover Operation Control Center) and for controlling the Rover on the Martian surface (Ref. 44).

ExoMars2022_Auto38

Figure 1: Illustration of the interplanetary transfer of the ExoMars 2020 mission (image credit: ExoMars collaboration)

ExoMars2022_Auto37

Figure 2: EDL (Entry Descent and Landing) phase of ExoMars (image credit: ExoMars collaboration)

The CM (Carrier Module), developed by OHB (Bremen, Germany), implements all the tasks needed to carry the whole system close to Mars atmospheric borders. It executes all the necessary maneuvers in interplanetary transfer and targets the trajectory such that the DM will enter at the required entry flight path angle and that the lander will touch down at the required location. Separation of the CM from the DM is currently foreseen to occur at EIP-30 minutes. The CM is not foreseen to operate after separation form the DM (Descent Module).

The CM and DM modules are mated by means of a separation mechanism bolted on both sides on 8 I/F points (pyrolocks on DM Rear Jacket side). Cable disconnection at separation is implemented by cutters.

The DM (Descent Module), developed by Lavochkin (Ru) with the contribution of key European Hardware and Software system contributions (see below), is a blunt-shape reentry capsule made of four separate main parts, FS (Front Shield), RJ (Rear Jacket), LP (Landing Platform) and PAS (PArachute System), performs the Entry, Descent and Landing on the Martian surface of a Landing Platform.

In particular the European Hard- and Software contributions consists of:

• The On-Board Computer, developed by Crisa (E), which manages the whole ExoMars 2020 mission during Cruise, EDL and Mars Surface Operation phases running the whole Mission Software,, developed by TAS (I).

• The IMU (Inertial Measurement Unit), developed by Airbus Defence and Space (ADS-F), which supports GNC during both Cruise and EDL phases

• The Radar Altimeter, developed by TAS (I), which is used to control the landing phase

• The UHF Transponder and Landing Platform Antenna, developed, respectively, by QinetiQ (UK) and Tryo (E), used for the proximity communications with the TGO

• The PArachute System, developed by TAS (F).

The DM accommodates the RM and provides for its egress to the Martian surface.

ExoMars2022_Auto36

Figure 3: ExoMars RSP selected landing sites (image credit: ExoMars collaboration)

The LP (Landing Platform), following the departure of the Rover, becomes SP (Surface Platform) for a long-lived stationary science instrument suite to study the Martian environment at the landing site. The 45 kg instrument suite with a planned lifetime of 2 Earth years is foreseen to consist of twelve instruments: In particular:

- TSPP (4 Cameras)

- MTK (Meteorology Package)

- RAT-M (Radiometer)

- MAIGRET (magnetometer)

- SAM (Seismometer)

- LaRa (Radioscience Mars Geodesy)

- PK (Dust Studies)

- M-DLS (Atmospheric Laser Spectrometer)

- FAST (Trace Gas Fourier Spectrometer)

- MGAK (Gas Analytical Package)

- Adron-EM (Neutron Spectrometer)

- HABIT (Humidity And Radiation Sensor)

The RM (Rover Module), developed under the responsibility of TAS (I), consists of a RV (Rover Vehicle) which carries an ALD (Analytical Laboratory and Drill) for subsurface sampling (down to 2 m).

The RV is made by Airbus Defence and Space (ADS-UK), the ALD is developed by TAS (I) with OHB (D) providing the sample processing and handling mechanisms and the Drill is developed by Leonardo (I) . The Rover Module contains European, Russian and NASA scientific payloads. The Rover is designed to deploy and egress from the DM Landing Platform, and to perform science exploration on the Mars surface with a suite of dedicated instruments.

RM Scientific package consists of the Pasteur Payload (PPL) composed of:

• 6 Survey Payloads

- Panoramic Cameras (WACs + HRC) PanCam

- Ground Penetrating Radar for Water Ice Subsurface Deposit Observation on Mars - WISDOM

- Close-Up Imager - CLUPI

- Mars Multispectral Imager for Subsurface Studies - Ma_Miss (in Drill)

- Neutron Detector – ADRON-RM (Roscomos - IKI)

- Infrared Spectrometer for ExoMars - ISEM (Roscomos - IKI)

• 3 Analytical Payloads (part of ALD)

- Infrared Microscope (MicrOmega)

- Raman Laser Spectrometer (RLS)

- Mars Organic Molecule Analyzer - (MOMA)

Note: The ALD is an integrated laboratory able to collect and prepare Martian terrain specimen from the Drill, handle and process them to the on board scientific instruments for in situ analysis, in a ultra-clean environment.


ExoMars RSP Mission Management

The 2020 mission operations, planning and execution will be performed by the MOC (Mission Operation Center) located at ESOC in Darmstadt with the support of:

• the SCC MOC

• the Rover Operations Control Center (ROCC)

• the Surface Platform Payload Operations Control Center (SPOCC)

• the TGO MOC, starting only from the EDL phase.

In particular ESOC/MOC will be responsible of controlling the SCC (and DM/LP) since Launcher separation up the Rover egress on the Mars surface. ESOC/MOC will be also responsible through ERCO (ESA Relay Coordination Office) in leading the ESA Data Relay Orbiter operations acting as data communication hub also to/from ROCC and SPOCC, starting from Launch until the egress of the RM after the LP landing on the Martian surface. Note: this very delicate last phase of the mission is named Post Landing to Egress (PLTE). 9)

After the RM egress, the ExoMars Rover mission will be independent and developed under the full responsibility of the ROCC while the Landing Platform Mission will be under the responsibility of the SPOCC (both via ERCO).

The X-band communications will use:

• The ESA Ground Station & Communications Subnet (ESTRACK)

• The NASA Ground Stations & Communication Subnet (DSN), to be considered for “critical phases“ like Safe Mode(s) or Flight Software upload or for “extreme contingencies” like the loss of SCC attitude

• The Russian Ground Stations & Communication Subnet (RNS).

During the LP (Landing Platform) mission the communication are performed via UHF band between On Board Computer (OBC1) and TGO (or NASA available Orbiters) during scheduled communication windows on visibility passes.

The Science Data Archive will make use of:

• The Pasteur payload Science Data Archiving and Dissemination located at ESAC, Spain

• The Science Data Archiving centers (NASA PDS and ESA PSA)

• Russian Science Ground Segment (NNK).

ExoMars2022_Auto35

Figure 4: Illustration of the ExoMars overall communication link (image credit: ExoMars collaboration)


ExoMars RSP system architecture

Hereafter, pictorial views of the main components of the ExoMars 2020 spacecraft together with the avionics block diagram are shown.

ExoMars2022_Auto34

Figure 5: ExoMars RSP Elements (image credit: ExoMars collaboration)

ExoMars2022_Auto33

Figure 6: Detail views of the Rover Module, ALD, Drill and Spacecraft Composite (image credit: ExoMars collaboration)

ExoMars2022_Auto32

Figure 7: ExoMars avionics architecture (image credit: ExoMars collaboration)

ExoMars2022_Auto31

Figure 8: Artist’s impression of the ExoMars 2020 rover (foreground), surface science platform (background) and the Trace Gas Orbiter (top), not to scale (image credit: ESA/ATG medialab)

Note: As of March 2020, the European Space Agency (ESA) and the Roscosmos Space Corporation have decided to postpone the launch of the second ExoMars mission to study the Red Planet to 2022 (Ref. 17). The mission is now called ExoMars 2022.

Figure 9: Replay of a press briefing on ExoMars, held on 12 March 2020. Participants were ESA Director General, Jan Wörner, the Director of Human and Robotic Exploration, David Parker, and Francois Spoto, the ExoMars Team Leader. Hosted by ESA’s Head of Communication, Philippe Willekens. Please note: Due to current travel restrictions, the briefing was hosted on ESA’s videoconferencing system, and broadcast on ESA Web TV. This has had an impact on the quality of the replay we are able to provide (video credit: ESA)


Launch: The new launch date of the ExoMars 2022 mission is scheduled for 20 September 2022 on a Proton rocket of Roscosmos from the Baikonur Cosmodrome (Kazakhstan) and arrive at Mars on 23 June 2023. 10)

Efficient orbital transfers, good communications and no large dust storms on the martian horizon make the chosen trajectory the fastest and safest choice.

When confronted with how to get to Mars, European and Russian teams have to juggle many factors. The mission analysis team at ESOC in Darmstadt, Germany, took into account the performance of Russia’s Proton launcher to identify a number of possible trajectories.

ExoMars2022_Auto30

Figure 10: The path that ExoMars 2022 will follow to reach the Red Planet is set. The trajectory that will take the spacecraft from Earth to Mars in 264 days foresees a touchdown on the martian surface on 10 June 2023, at around 17:30 CEST (15:30 UTC), image credit: ESA

ExoMars2022_Auto2E

Figure 11: Overview of the ExoMars program timeline. The ExoMars program is a joint endeavor between Roscosmos State Corporation and ESA. Apart from the 2022 mission, it includes the Trace Gas Orbiter (TGO) launched in 2016. The TGO is already both delivering important scientific results obtained by its own Russian and European science instruments and relaying data from NASA’s Curiosity Mars rover and InSight lander. The module will also relay the data from the ExoMars 2022 mission once it arrives at Mars (image credit: ESA)

The ExoMars 2022 landing site is Oxia Planum, located in the northern hemisphere of Mars.

Figure 12: Scientists at TU Dortmund University have generated high-accuracy 3D models of the terrain in Oxia Planum on Mars. The DTMs (Digital Terrain Models) have a resolution of about 25 cm per pixel and will help scientists to understand the geography and geological characteristics of the region and to plan the path of the rover around the site. The region shown in this animation covers a large portion of the 120 x 19 km landing ellipse, with the eroded crater in the flyover towards the edge of the ellipse. Closer to the center, the terrain is relatively flat, which is more favorable for landing and operations. The DTMs are based on high-resolution imagery from the HiRISE instrument on NASA’s MRO (Mars Reconnaissance Orbiter), [video credit: TU Dortmund/NASA JPL-Caltech]



Development status of ExoMars 2022 - RSP (Rover and Surface Platform) Mission

• November 18, 2020: The parachute system that will help deliver the Rosalind Franklin ExoMars rover to Mars has completed the first full-scale high altitude drop test with redesigned elements following two unsuccessful tests last year. Parachute extraction and deceleration proceeded as expected, the test vehicle landed safely and the test parachutes were recovered. However, some canopy damage occurred, pointing to the early inflation process for the focus of further improvements. 11)

- “Landing on Mars is extremely difficult, with no room for error,” says ExoMars Program Team Leader Francois Spoto. “The latest test was a good step forward but is not yet the perfect outcome we are seeking. Therefore, we will use the extensive test data we have acquired to refine our approach, plan further tests and keep on track for our launch in September 2022.”

ExoMars2022_Auto2F

Figure 13: ExoMars 2022 parachute deployment sequence (image credit: ESA)

Parachute profile

- The Rosalind Franklin rover and Kazachok surface platform are encapsulated inside a descent module that will be transported to Mars by a carrier module. The descent module is equipped with two parachutes – each with its own pilot chute for extraction – to help slow it down prior to landing on Mars. Once the atmospheric drag has slowed the descent module from around 21 000 km/h to 1700 km/h, the first parachute will be deployed. Some 20 seconds later, at about 400 km/h, the second parachute will open. Following separation of the parachutes about 1 km above ground the braking engines will kick in to safely deliver the landing platform onto the surface of Mars. The entire sequence from atmospheric entry to landing takes just six minutes.

- The complete parachute descent system needs testing and verifying on Earth, for which high altitude drop tests play an essential role to help represent the low atmospheric pressure on Mars – a vital aspect when considering parachute inflation.

New round of high altitude tests

- The test conducted from Oregon, USA was delayed from March 2020 due to COVID-19 restrictions, forest fires and unfavorable wind conditions. Logistics re-planning and compatible weather finally enabled it to take place 9 November.

- The test setup saw the drop test vehicle lofted to a height of 29 km in a stratospheric balloon.

- The first main parachute had an upgraded parachute bag and a Kevlar reinforcement around the vent hem (that is, around the vent 'hole' in the center of the parachute). The second main parachute had several reinforcement rings and an upgraded parachute bag, but not reinforced parachute lines, which are also planned. The fully upgraded second parachute will be used in a drop test at the Swedish Space Corporation ESRANGE facility in Kiruna, Sweden in mid-2021. The reinforcement rings were introduced to help prevent the dramatic tearing of the canopies witnessed during tests in 2019.

- The timeline of the latest test, including extraction and deceleration, went exactly to plan. However, four tears in the canopy of the first main parachute and one in the second main parachute were found after recovery. The damage seemed to happen at the onset of the inflation, with the descent otherwise occurring nominally.

- The team are now analyzing the test data to determine further improvements for the next tests. Planning is underway for future tests in the first half of next year, to ‘qualify’ the complete parachute system ready for launch in September 2022.

- Once safely in the Oxia Planum region of Mars in June 2023, the Rosalind Franklin rover will drive off the platform and begin its science mission. It will seek out geologically interesting sites to drill below the surface, to determine if life ever existed on our neighbor planet.

ExoMars2022_Auto2E

Figure 14: Overview of the ExoMars program timeline (image credit: ESA)

- All parachute system qualification activities are managed and conducted by a joint team involving the ESA, TASinI (prime contractor), TASinF (PAS lead), Vorticity (parachute design and test analysis) and Arescosmo (parachute and bags manufacturing).

- The ExoMars program is a joint endeavor between ESA and Roscosmos. In addition to the 2022 mission, it also includes the Trace Gas Orbiter (TGO) launched in 2016. The TGO is already both delivering important scientific results of its own and relaying data from NASA’s Curiosity Mars rover and InSight lander. It will also relay the data from the ExoMars 2022 mission once it arrives at Mars in 2023.

• November 4, 2020: ExoMars platform and rear jacket. 12)

ExoMars2022_Auto2D

Figure 15: The Kazachok landing platform of the ExoMars mission is revealed as the descent module rear jacket is lifted above. The platforms ramps and solar panels are seen in folded configuration. Kazachok currently sits on a supporting trolley where eventually the front shield will be fitted. The platform and Rosalind Franklin rover will undergo joint testing at the Thales Alenia Space facility in Cannes, France, in the coming weeks (image credit: Thales Alenia Space)

• September 29, 2020: Last Sunday night a long, heavy truck hit the road escorted from Italy with a precious cargo. While most of the citizens in Turin prepared to enjoy their dinner, several modules of the ExoMars spacecraft left the Thales Alenia Space facilities. Next stop: Cannes, France. 13)

- The journey took less than a day. Besides stringent controls in dedicated clean rooms and tents – amongst the cleanest places on Earth – to avoid any biological contamination from Earth to Mars, Russian and European teams took a number of precautionary measures to minimize the risk of spreading the Coronavirus.

- Workers remained fully shrouded within ‘bunny suits’ to control any kind of contamination during the packing of the ExoMars elements before shipment. In this image, two engineers work on ESA’s Rosalind Franklin rover with its solar panels and drill folded.

ExoMars2022_Auto2C

Figure 16: Workers remained fully shrouded within ‘bunny suits’ to control any kind of contamination during the packing of the ExoMars elements before shipment. In this image, two engineers work on ESA’s Rosalind Franklin rover with its solar panels and drill folded. The white capsule with golden legs in the background corresponds to the carrier module integrated with the Russian surface platform, dubbed Kazachok. These two elements will reunite with the rover in Cannes at the end of October (image credit: Thales Alenia Space)

- The microbiological samples taken after rigorous cleanliness procedures showed that the contamination levels were within the requirements for a safe landing on Mars.

- Engineers will be busy with a series of tests in the next months. The whole spacecraft will undergo thermal, vacuum and acoustic tests during the next months in France. Coming up is the deployment of the solar panels that will power up the Rosalind Franklin rover on Mars.

- Teleworking is nothing new to the ExoMars spacecraft and teams. There will be some remote operations in France before the year ends. Rosalind Franklin will be commanded from the Rover Operations Control Center (ROCC) at the ALTEC premises in Turin, Italy, to rehearse cruise and deployment maneuvers once on the surface of Mars.

- ExoMars leaves behind an intense period of testing in Italy since April, from health checks to assembly, maintenance operations and leak tests. Fasteners have been added to the solar panels of the rover to increase robustness during the unfolding and surface operations on the Red Planet.

- Rosalind Franklin is fitted with a drill – a first in Mars exploration – to extract samples down to a maximum of two meters, where ancient biomarkers may still be preserved from the harsh radiation on the surface, and hosts a sophisticated laboratory to analyze the samples on Mars.

- Both drill and laboratory have been extensively tested using soil similar to that expected on Mars and under conditions representative of the martian environment.

- The ExoMars program is a joint endeavor between ESA and the Russian State Space Corporation, Roscosmos.

• July 22, 2020: As Mars exploration prepares for a rebirth, a European rover tunes up its gear for the challenges ahead. 14)

- On 23 July, ESA and dozens of industrial partners will assess the readiness of the ExoMars robotic explorer, named Rosalind Franklin, for a trip to the Red Planet in 2022. The European rover will drill down to two meters into the martian surface to sample the soil, analyze its composition and search for evidence of life buried underground.

- The rover successfully proved that it is fit to endure the martian conditions during the environmental test campaign earlier this year in Toulouse, France. This laboratory on wheels withstood temperatures as low as –120°C and less than one hundredth of Earth’s atmospheric pressure to simulate the extremes of its journey through space and on the surface of Mars.

- By the end of this week a more robust set of solar panels will begin its trip to reunite with the rover after some cracks were detected during those environmental tests. New fasteners are in place and will be on their way from the Airbus facilities in Stevenage, in the UK, to Thales Alenia Space in Turin, Italy, where the rover awaits power up at the beginning of August.

- The disruptions caused by the coronavirus pandemic have added new obstacles for industry across Europe on the road to Mars. Parachute and interface tests are expected to resume in October.

- New missions to Mars launch from a broad range of nations – while the United Arab Emirates’ historic first mission to Mars lifted off from Japan last Sunday, China is preparing to launch tomorrow its first rover to Mars, known as Tianwen-1. NASA’s Mars 2020 mission is set to take off with the Perseverance rover onboard next week, on July 30.

- These missions focus on the search for evidence of life on the Red Planet and a better understanding of how Earth and Mars evolved so differently.

- “We hope that ESA’s Rosalind Franklin rover will help write a new page in Mars exploration by allowing us to study organic molecules on the spot,” says Jorge Vago, ESA’s ExoMars project scientist.

- Dr Rosalind Franklin, the prominent scientist behind the discovery of the structure of DNA, one of life’s most important molecules, would have been 100 years old on 25 July this year. Her niece, also named Rosalind Franklin in her memory, points out that the X-ray diffraction expert “never conceived science as a race of competitors.”

- After a visit to ESA’s technical center in the Netherlands last year, Rosalind believes that her aunt would have loved the ExoMars team spirit. “The work of ESA engineers on the rover struck me – they really do it for the results, not for themselves. This is what Rosalind Franklin was all about: commitment and dedication to science,” said Rosalind from her home in California, US.

- A series of talks and events is taking place around the globe this week to celebrate the centenary of this “woman of integrity who went after scientific discovery for the betterment of humankind”, as her niece describes her. The legacy of the scientist lives on today, and the ExoMars rover will help leave her symbolic footprint on Mars in 2023.

ExoMars2022_Auto2B

Figure 17: The ExoMars rover is part of the ExoMars program, a joint endeavor between ESA and the Russian State Space Corporation, Roscosmos (image credit: Airbus)

• May 15, 2020: The second ExoMars mission, scheduled for launch to the Red Planet in 2022, is taking advantage of the extra time to upgrade some of the rover’s instruments and get ready for the next parachute high-altitude drop tests. 15)

- The new launch date on the horizon is allowing more margin for replacements and repairs to the ExoMars Rosalind Franklin rover.

- The solar panels that will help the rover survive the cold Martian nights will gain in strength. After some cracks were detected during the environmental tests earlier this year, new fasteners will be installed to reinforce the interface between panels and holding brackets at the Airbus facilities in Stevenage, in the UK.

- The flight model of the rover remains at Thales Alenia Space in Turin, Italy, for routine maintenance operations, such as battery charge and cleanliness checks.

- Strict microbiological controls are key to make sure that ExoMars does not introduce terrestrial contamination to the Red Planet. This is to comply with the stringent planetary protection requirements and to avoid false positives in the scientific measurements – what scientists call ‘forward contamination’.

- Scientists and engineers are looking into replacing the secondary electronics box on the Mars Organic Molecule Analyzer, MOMA, an instrument capable of detecting organic molecules and investigate the potential origin, evolution and distribution of life on Mars.

ExoMars2022_Auto2A

Figure 18: The Rosalind Franklin rover of the joint ESA-Roscosmos ExoMars mission completed a series of environmental tests at the end of 2019 at Airbus, Toulouse, France. This included final thermal and vacuum tests where the Rover is heated and cooled to simulate the temperatures of its journey through space and on the surface of Mars. For example, Rosalind Franklin can expect temperatures dropping to –120ºC outside, and –50ºC inside the rover once on Mars. It must also be able to operate in less than one hundredth of Earth’s atmospheric pressure – and in a carbon dioxide-rich atmosphere (image credit: Airbus)

- The infrared spectrometer that will analyze minerals on the surface, ISEM, might also be replaced with a spare model with better performance.

- One of the cameras on top of the rover’s drill designed to acquire high-resolution and color images of the rocks and soil around the rover – the Close-Up Imager, CLUPI – is having a software upgrade.

- “The instruments were already in great shape, but having found the time to make these improvements is fantastic for our scientific mission on Mars,” says Jorge Vago, ESA’s ExoMars project scientist.

ExoMars2022_Auto29

Figure 19: The ExoMars close-up imager, Clupi, underwent final calibration tests at ESA’s technical facility in the Netherlands, before being shipped to Stevenage to be attached to the rover’s drill unit. The imager will provide close-up views of the soil that is churned out by the drilling action. When the drill is in ‘stowed’ position the camera will be able to image the area in front of the rover (image credit: ESA, M. Cowan)

ExoMars2022_Auto28

Figure 20: Photo of the Rosalind Franklin ExoMars rover after completing environmental and vacuum testing in Toulouse, France. The rover was tested in a clean room to withstand conditions similar to those on Mars. The vehicle left the Thales Alenia Space facilities in Toulouse on 11 February 2020 en route to Cannes, where it will be integrated with the carrier and descent modules, and it will undergo months of intense testing to confirm it is compatible with the mission operations and the martian environment (image credit: Airbus)

Parachutes ready for drop tests

- New deployment bags for the parachutes of the ExoMars mission are cleared to go for final high-altitude drop tests. However, travel restrictions in response to the coronavirus pandemic have forced to postpone these tests from May to September 2020 at the earliest.

- The dynamic extraction test campaign was a success. The updated design with eased lines and canopy exit proved to avoid tears at extraction velocities of 200 km/h, similar to the high speeds at which the parachutes will be pulled from their bags during the descent towards the surface of Mars.

Figure 21: Slow motion footage of ExoMars parachute extraction tests. A compressed air cannon shot the bag horizontally, releasing the parachute as it will happen during the mission. The lid of the parachute assembly is pulled along a suspended cable at high speed while the end of the assembly is fixed to a wall. The extraction takes a split second. A total of six ground-based tests saw the clean extraction of the parachutes from their bags, with no frictional damage, during a test campaign between November 2019 and January 2020 at NASA’s Jet Propulsion Laboratory in California, US. - New deployment bags for the parachutes with eased lines and canopy exit proved to avoid tears at extraction velocities of 200 km/h, similar to the high speeds at which the parachutes will be pulled from their bags during the descent towards the surface of Mars. The two parachutes – each with its own pilot chute for extraction – are key to slow the ExoMars descent module before landing on the Red Planet. In just six minutes, the module goes from around 21,000 km/h during atmospheric entry to a soft landing at the surface (video credit: NASA/JPL-Caltech)

- “The meticulous folding of each parachute inside its bag is essential to guarantee a correct deployment,” explains Thierry Blancquaert, ExoMars spacecraft systems engineering team leader.

- Just the folding of the second main parachute, which with 35 m of diameter will be the largest to ever fly on Mars, takes over three days.

- A total of six ground-based tests saw the clean extraction of the parachutes from their bags, with no frictional damage, during a test campaign between November 2019 and January 2020 at NASA’s Jet Propulsion Laboratory in California, US.

- These tests followed the high-altitude drop tests in 2019, during which critical damage to both parachute canopies was observed.

- The two parachutes – each with its own pilot chute for extraction – are key to slow the ExoMars descent module before landing on the Red Planet. In just six minutes, the module goes from around 21,000 km/h during atmospheric entry to a soft landing at the surface.

Flawless release

- The high-speed tests mimicked the extraction velocity the parachutes will experience during the descent phase, just a couple of minutes before touchdown. A compressed air cannon shot the bag horizontally, releasing the parachute as it will happen during the mission.

- “The extraction takes a split second, it all happens very quickly,” says Thierry.

- ESA benefitted from NASA’s hands-on parachute experience. The cooperation gave Europe access to special test equipment at the Jet Propulsion Laboratory, and the opportunity to run several dynamic extraction tests on a quick turnaround.

- “It was a real challenge to organize this campaign so quickly with all the industry partners involved. The support provided by NASA was excellent and instrumental to the successful validation of our new parachute deployment bags,” adds Thierry.

Flying higher

- The next step, high-altitude drop tests at a test range in Oregon, US, will have to wait until the end of September 2020. This type of tests requires complex logistics and strict weather conditions for flight safety.

- The test parachute embedded into its canister and mounted onto a drop test vehicle will be lifted to an altitude of nearly 30 km with a stratospheric helium balloon. This drop test vehicle will be released by telecommand and freefall until the test parachute sequence starts in pressure conditions similar to diving into the thin martian atmosphere.

- These tests should demonstrate the capability of the main parachutes to deploy smoothly from their bags and to sustain the inflation loads without tearing.

• April 2, 2020: Carefully wrapped inside this donut-shaped bag is a 35-m diameter parachute that will endure a frenzied six-minute dive into martian atmosphere. 16)

- The 64 kg parachute, made mostly of nylon and Kevlar fabrics, has been thoroughly sterilized to reduce its level of contamination for planetary protection. One of the main goals of ExoMars is to search for signs of life on the Red Planet, so any microbes hitchhiking on its ride from Earth would interfere with the investigation and could trigger a false positive – what scientists call ‘forward contamination’.

- The potential existence of past and perhaps even present life on Mars requires rigorous sterilization. Scientists want to be sure that the instruments on the ExoMars rover Rosalind Franklin, only detect signs of indigenous life, but protecting the martian environment from ourselves is equally as important. A planetary protection policy by the Committee on Space Research (COSPAR) details all requirements, in compliance with the United Nations Outer Space Treaty.

- The parachute was heated in an oven at 125°C for several days to kill any microbes. The oven is part of ESA’s Life, Physical Sciences and Life Support Laboratory, a state-of-the-art facility in the Netherlands. The Laboratory has also cleaned ExoMars instruments and subsystems, but this second stage parachute is the largest item to be sterilized.

- The dry heat sterilizer is in the ‘ISO Class 1’ cleanroom, one of the cleanest places in Europe. All air passes through a two-stage filter ensuring less than 10 dust particles no larger than 10 millionth of a meter, or less than the size of the coronavirus.

- People working on the ExoMars hardware are the main biohazard. Every day, each of us sheds millions of skin particles. Everyone entering the chamber has to gown up more rigorously than a surgeon before passing through an air shower to remove any remaining contaminants. Watch how to dress to avoid being a ‘bioburden’ in the latest ExoMars vlog.

- The parachute will next prove itself in high-altitude drop tests. The whole parachute assembly system, mounted onto a drop test vehicle, will be lifted to an altitude of nearly 30 km by helium balloon. The vehicle will free-fall until the test parachute sequence starts in pressure conditions similar to diving into the martian atmosphere.

- The dates of these tests have been postponed due to the coronavirus outbreak, and a new window of opportunity for testing is pending confirmation.

ExoMars2022_Auto27

Figure 22: This qualification model is a copy of the largest-ever parachute to open on the Red Planet when it flies on the ExoMars 2022 mission – and it is at least 10,000 times cleaner than your smartphone (image credit: ESA, P. Horváth)

• March 12, 2020: The joint ESA-Roscosmos project team evaluated all the activities needed for an authorization to launch, in order to analyze the risks and schedule. With due consideration of the recommendations provided by European and Russian Inspectors General, ExoMars experts have concluded that tests necessary to make all components of the spacecraft fit for the Mars adventure need more time to complete. 17)

- The primary goal of the mission is to determine if there has ever been life on Mars, and to better understand the history of water on the planet. The ExoMars rover, named Rosalind Franklin, includes a drill to access the sub-surface of Mars as well as a miniature life-search laboratory kept within an ultra-clean zone.

- In the frame of a dedicated meeting, ESA and Roscosmos heads Jan Wörner and Dmitry Rogozin agreed that further tests to the spacecraft with the final hardware and software are needed. In addition, the parties had to recognize that the final phase of ExoMars activities are compromised by the general aggravation of the epidemiological situation in European countries.

- "We have made a difficult but well-weighed decision to postpone the launch to 2022. It is driven primarily by the need to maximize the robustness of all ExoMars systems as well as force majeure circumstances related to exacerbation of the epidemiological situation in Europe which left our experts practically no possibility to proceed with travels to partner industries. I am confident that the steps that we and our European colleagues are taking to ensure mission success will be justified and will unquestionably bring solely positive results for the mission implementation," said Roscosmos Director General Dmitry Rogozin.

- "We want to make ourselves 100% sure of a successful mission. We cannot allow ourselves any margin of error. More verification activities will ensure a safe trip and the best scientific results on Mars,” said ESA Director General Jan Wörner.

- "I want to thank the teams in industry that have been working around the clock for nearly a year to complete assembly and environmental testing of the whole spacecraft. We are very much satisfied of the work that has gone into making a unique project a reality and we have a solid body of knowledge to complete the remaining work as quickly as possible."

- To date, all flight hardware needed for the launch of ExoMars has been integrated in the spacecraft. The Kazachok landing platform is fully equipped with thirteen scientific instruments, and the Rosalind Franklin rover with its nine instruments recently passed final thermal and vacuum tests in France.

- The latest ExoMars parachutes dynamic extraction tests have been completed successfully at NASA’s Jet Propulsion Laboratory, and the main parachutes are ready for the two final high-altitude drop tests in March in Oregon, US.

- The descent module has been undergoing propulsion system qualification in the past month. The ExoMars descent module and landing platform have been undergoing environmental testing in Cannes, France, to confirm the spacecraft is ready to endure the harsh conditions of space on its journey to Mars.

- The new schedule foresees a launch between August and October 2022. Celestial mechanics define that only relatively short launch windows (10 days each) every two years exist in which Mars can be reached from Earth.

- ExoMars will be the first mission to search for signs of life at depths up to two meters below the martian surface, where biological signatures of life may be uniquely well preserved.

• February 14, 2020: The Rosalind Franklin ExoMars rover after completing environmental and vacuum testing in Toulouse, France. The rover was tested in a clean room to withstand conditions similar to those on Mars. 18)

- The ExoMars rover will be Europe’s first planetary rover. It will search for signs of past or present life on Mars and is equipped with a 2m drill to take samples from below the surface where they will have been protected from the harsh radiation environment.

ExoMars2022_Auto26

Figure 23: The vehicle left the Thales Alenia Space facilities in Toulouse on 11 February 2020 en route to Cannes, where it will be integrated with the carrier and descent modules, and it will undergo months of intense testing to confirm it is compatible with the mission operations and the martian environment (image credit: Airbus Space)

• February 13, 2020: The ExoMars landing platform, carrier and descent modules together during environmental testing in the anechoic chamber at Thales Alenia Space (TAS) in Cannes, France. 19)

- The composite spacecraft is undergoing environmental testing to confirm it is ready to endure the harsh conditions of space on its eight-month journey to Mars.

- The three integrated modules were placed in a special chamber with the inside walls covered with pyramid-shaped non-reflective foam to absorb signals such as TV and radio, radar and even mobile phone calls, and prevent unwanted reflections.

ExoMars2022_Auto25

Figure 24: The carrier module, provided by OHB System, is the communication link between Earth and the spacecraft, and will support navigation with star trackers and Sun sensors. The descent module and landing platform, provided by Lavotchkin, are mated in this picture (image credit: TAS)

- The tests will verify that the modules work well together without any glitches or interference.

- The ExoMars mission will investigate how Mars has evolved and whether there may be conditions for life.

• January 16, 2020: The Rosalind Franklin rover of the joint ESA-Roscosmos ExoMars mission completed a series of environmental tests at the end of 2019 at Airbus, Toulouse, France. This included final thermal and vacuum tests where the Rover is heated and cooled to simulate the temperatures of its journey through space and on the surface of Mars. For example, Rosalind Franklin can expect temperatures dropping to –120°C outside, and –50 °C inside the rover once on Mars. It must also be able to operate in less than one hundredth of Earth’s atmospheric pressure – and in a carbon dioxide-rich atmosphere. 20)

- Last year the ‘structural and thermal model’ of the rover successfully completed a rigorous environmental test campaign; the latest round of tests subjected the real flight-model to the simulated space environment.

- Now the focus moves to final checks on the rover systems. This includes checking the alignment of instruments working together, such as the imaging systems, and a final functional test of the integrated system after the environmental campaign. Once these verifications on the rover are completed, a functional check of the interfaces with the surface platform and descent module that will deliver it safely to the surface of Mars will be performed at Thales Alenia Space, Cannes, France.

- The primary goal of the mission is to determine if there is or there has ever been life on Mars, and to better understand the history of water on the planet. The rover will seek out interesting geological locations to examine with its scientific tools and to drill to retrieve underground samples, on a quest to tackle these questions.

- The mission is foreseen for launch in the launch window 26 July–11 August 2020 on a Russian Proton-M rocket with a Breeze-M upper stage from Baikonur, Kazakhstan, arriving at Mars 19 March 2021.

ExoMars2022_Auto24

Figure 25: ExoMars Rover completes environmental tests (image credit: Airbus)

• December 19, 2019: A series of ground-based tests designed to check the extraction of the ExoMars 2020 mission’s parachutes from their bags have started successfully with promising results to keep the mission on track for next year’s launch. 21)

- Landing on Mars is a high-risk endeavour with no room for error. In just six minutes, a descent module with its precious cargo cocooned inside has to slow from around 21,000 km/h at the top of the planet’s atmosphere, to a soft landing at the surface controlled by the lander’s propulsion system.

- A key element of reaching the surface safely is based around a parachute system.

ExoMars2022_Auto23

Figure 26: The ExoMars parachute deployment sequence that will deliver a surface platform and rover to the surface of Mars in 2021 (following launch in 2020). The graphic is not to scale, and the colors of the parachutes are for illustrative purposes only (image credit: ESA)

- For ExoMars 2020, which comprises the Rosalind Franklin rover to explore the planet for signs of life, and the Kazachok surface platform to monitor the local environment at the landing site, a two-parachute system is used, each with its own pilot chute for extraction. The first main parachute has a diameter of 15 m and will be deployed while the descent module is still travelling at supersonic speeds, while the second main parachute has a 35 m diameter, the largest to ever fly on Mars.

- Earlier this year, during two high-altitude drop tests, damage to both parachute canopies was observed. Intensive investigations revealed that the main issues concerned the parachute bags, and not the parachutes themselves. Thanks to support from NASA to benefit from their hands-on parachute experience, ESA has made modifications to the way the parachutes are released from the bags, to ease the extraction and avoid frictional damage.

Figure 27: ExoMars parachute extraction tests. A series of clips from different angles and at different speeds showing parachute extraction tests using a NASA/JPL test rig powered by compressed air. The lid of the parachute assembly is pulled along a suspended cable at high speed while the end of the assembly is fixed to a wall. When the release mechanism is activated, the parachute bag is pulled away from the parachute at the target speed, mimicking the extraction as it will be on Mars. At the highest speeds, the tests enable the extraction to take place at more than 200 km/h (video credit: NASA/JPL-Caltech)

- The cooperation with NASA has also provided access to special test equipment at NASA’s Jet Propulsion Laboratory that is enabling ESA to conduct multiple dynamic extraction tests on the ground to validate the new design adaptations prior to the upcoming high-altitude drop tests. The ground tests mimic the high speeds at which the parachutes will be pulled from their bags during the descent phase at Mars.

- Calibration tests, including low-speed extraction tests at around 120 km/h on both main parachutes and the first high-speed extraction test at a targeted speed of just over 200 km/h on the first main parachute, have already been completed. The low-speed tests were crucial to verify the stability of the new parachute bag design, while the high-speed tests mimic that at which the parachutes will be pulled from their bags during the descent phase at Mars.

- Real-time observations of these initial tests showed a clean and correct release of the parachutes from their bags, with no damages seen in either the parachute system or the bag.

- “Landing on Mars is difficult and we cannot afford to have any loose ends,” says Thierry Blancquaert, ExoMars Spacecraft Systems Engineering Team Leader. “After many hurdles, the parachute system modifications are moving forward, and these preliminary tests show very promising results that pave the way for the next qualification tests.”

- To save time and resources, and to quickly test the proof of concept of the new parachute bags, the initial tests were carried out using the repaired parachutes from the high-altitude drop tests. Given the positive results of the first tests, and following the completion of the high-speed tests, the extractions will be repeated using the existing parachute ‘spares’, which have not been previously damaged or undergone repairs.

- Importantly, unlike the high-altitude drop tests which require complex logistics and strict weather conditions, making them difficult to schedule, the ground tests can be repeated on a quick turnaround, buying significantly more time in the test campaign and reducing risk by allowing more tests to be conducted on a short time frame.

- Further high-speed tests are planned in the coming weeks to confirm the results of the preliminary tests. Then the parachute systems will be tested again in two high-altitude drop tests in Oregon, US, in February and March 2020. The tests have to be completed prior to the ExoMars project’s ‘qualification and acceptance review’ planned for the end of April in order to meet the 2020 launch window (26 July–11 August).

- In the meantime, the rover is nearing completion of its environmental test campaign at Airbus, Toulouse, France. At the same time, the flight model spacecraft that will transport the mission from Earth to Mars, and which contains the carrier module coupled with the Russian descent module, is at Thales Alenia Space, Cannes, France, where it underwent thermal environment tests. The scientific instruments of the surface platform are now being integrated by the Russian Academy of Sciences (IKI). The rover is expected in Cannes in late January, with the integration into the lander foreseen end February.

- The mission will launch on a Proton-M rocket with a Breeze-M upper stage from Baikonur, Kazakhstan. Once landed safely in the Oxia Planum region of Mars on 19 March 2021, the rover will drive off the surface platform, seeking out geologically interesting sites to drill below the surface, to determine if life ever existed on our neighbor planet.

- All parachute system qualification activities are managed and conducted by a joint team involving the ESA project (supported by Directorate of Technology, Engineering and Quality expertise), TAS-I (prime contractor, in Turin), TAS-F (PAS lead, in Cannes), Vorticity (parachute design and test analysis, in Oxford) and Arescosmo (parachute and bags manufacturing, in Aprilia). NASA/JPL-Caltech has provided engineering consultancy, access to the dynamic extraction test facility, and on-site support. The extraction tests are supported through an engineering support contract with Airborne Systems, who also provide NASA’s Mars 2020 parachutes, and by Free Flight Enterprises for the provision of parachute folding and packing facilities.

- The ExoMars program is a joint endeavour between ESA and Roscosmos. In addition to the 2020 mission, it also includes the Trace Gas Orbiter (TGO) launched in 2016. The TGO is already both delivering important scientific results of its own and relaying data from NASA’s Curiosity Mars rover and InSight lander. It will also relay the data from the ExoMars 2020 mission once it arrives at Mars in March 2021.

ExoMars2022_Auto22

Figure 28: Close-up of the parachute bag – containing one of two test parachutes of the ExoMars 2020 mission – using a NASA/JPL test rig powered by compressed air. The image shows the new configuration of the parachute bag, which releases the parachute from the center outward, with the bag opening in a petal-like fashion. The tests are carried out to verify the extraction of the parachutes from the modified bag (image credit: NASA/JPL-Caltech)

• December 13, 2019: The work of Dr Rosalind Franklin (1920-1958) is well known for being central to the discovery of the iconic double-helix structure of DNA, the fabric of life as we know it on Earth. More than half a century later, she also inspired the name of ESA’s ExoMars rover, scheduled to launch in 2020 and start its exploration of the Red Planet in 2021. But the lasting imprint Rosalind left on her family also inspired her younger brother to name his own daughter Rosalind. 22)

ExoMars2022_Auto21

Figure 29: Rosalind meets Rosalind. After learning that the rover had been named in honor of her aunt – the result of a public competition led by the UK Space Agency – and also sharing the same name, Rosalind Franklin reached out to ESA, curious to learn more about the mission. Last month, she visited ESA’s technical center in the Netherlands and is pictured here meeting the 1:1 scale model of the Rosalind Franklin ExoMars rover for the first time (image credit: ESA, G. Porter)

- Rosalind said: “I was overwhelmed to see the rover and to meet the extraordinary scientists that have dedicated years to the development of the project, bringing it from concept to reality, and recognizing my Aunt Rosalind’s contribution to science by naming it after her. It was truly moving and filled me with pride and appreciation. It was an amazing day of learning and discovery and I know she would feel so honored and full of admiration towards everyone involved.”

- ExoMars mission experts were on hand to answer her questions and to explain more about how the rover will be driven across the martian surface, and the science experiments it will carry out. One of the unique aspects of the rover is its two meter long drill that will retrieve underground samples for analysis in its onboard laboratory, where it will be able to sniff out signatures of life past or present.

- Just as scientific discovery is in the soul of the ExoMars program, Dr Rosalind Franklin knew from a young age that she wanted to be a scientist. Devoted and determined, she followed her dream, graduating with a Natural Sciences degree from Cambridge University, UK, in 1941, and earning a PhD in physical chemistry in 1945. She became an expert in X-ray diffraction imaging, applied to studying the physical chemistry of coals, and later revealing the hidden secrets of DNA, RNA and viruses.

- Her legacy lives on today in a number of ways: numerous scientific institutes carry her name – one example being in the Rosalind Franklin University of Medicine and Science in Chicago, U.S, that her niece is a trustee of. Next year her legacy will extend into space, and her adventurous spirit will be lived through the intrepid exploration of the Rosalind Franklin ExoMars rover as it discovers hidden secrets of the Red Planet.

- The ExoMars program is a joint endeavor between ESA and Roscosmos and comprises two missions: the first – the TGO (Trace Gas Orbiter) – launched in 2016 while the second, comprising the Rosalind Franklin rover and Kazachok surface platform, is planned for 2020. Together they will address the question of whether life has ever existed on Mars. The TGO is already delivering important scientific results and will also relay the data from the ExoMars 2020 mission once it arrives at Mars in March 2021.

• October 15, 2019: Positive steps towards solving the problems discovered with the ExoMars mission parachutes have been taken in the last month to keep on track for the July-August 2020 launch window. 23)

- The mission needs two parachutes – each with its own pilot chute for extraction – to help slow the descent module prior to landing on Mars. Once the atmospheric drag has slowed the descent module from around 21,000 km/h to 1,700 km/h, the first parachute will be deployed. Some 20 seconds later, at about 400 km/h, the second parachute will open. Following separation of the parachutes about 1 km above ground the braking engines will kick in to safely deliver a landing platform – with a rover encapsulated inside – onto the surface of Mars for its scientific mission. The entire sequence from atmospheric entry to landing takes just six minutes.

Figure 30: ExoMars progress update (video credit: ESA)

- While the deployment sequence of all four parachutes was successfully tested in high altitude drop tests earlier this year, damage to the 15 m-diameter primary parachute and 35 m-diameter secondary parachute canopy was observed. Despite precautionary design adaptations being introduced for a second test of the 35 m parachute, canopy damage occurred again.

- A thorough inspection of all the recovered hardware has since been completed, allowing the team to define dedicated design adaptations to both primary and secondary main parachutes. Some promising design changes will also be applied to the parachute bags to ease the lines and canopy exit from the bags, avoiding frictional damage.

- ESA has also requested support from NASA to benefit from their hands-on parachute experience. This cooperation gives access to special test equipment at NASA’s Jet Propulsion Laboratory that will enable ESA to conduct multiple dynamic extraction tests on the ground in order to validate any foreseen design adaptations prior to the upcoming high altitude drop tests.

- The next opportunities for high altitude drop tests are at a range in Oregon, US, January–March 2020. ESA is working to complete the tests of both the 15 m and 35 m parachute prior to the ExoMars project’s ‘qualification acceptance review’, which is planned for the end of April in order to meet the mission launch window (26 July–11 Aug 2020).

- The qualified parachute assembly, inside its flight canister, should ideally be integrated into the spacecraft prior to shipment to Baikonur in April, but it is also possible to do so during the spacecraft preparation activities at the launch site in May.

- The rover is currently undergoing its environmental test campaign at Airbus Toulouse, France. At the same time, the flight carrier module containing the descent module and lander platform is completing its final round of testing at Thales Alenia Space, Cannes, France. The rover will be integrated into the spacecraft in early 2020.

- All parachute system qualification activities are managed and conducted by a joint team involving the ESA project (supported by Technical Directorate expertise), TASinI (prime contractor), TASinF (PAS lead), Vorticity (parachute design and test analysis) and Arescosmo (parachute and bags manufacturing).

• September 16, 2019: Scientists at TU Dortmund University are generating high-accuracy 3D models of the terrain in Oxia Planum on Mars, ahead of the arrival of the ESA/Roscosmos ExoMars rover, Rosalind Franklin, in 2021. The DTMs (Digital Terrain Models) have a resolution of about 25 cm per pixel and will help scientists to understand the geography and geological characteristics of the region and to plan the path of the rover around the site. 24)

Figure 31: The region shown in this animation covers a large portion of the 120 x 19 km landing ellipse, with the eroded crater in the flyover towards the edge of the ellipse. Closer to the center, the terrain is relatively flat, which is more favorable for landing and operations (video credit: TU Dortmund University)

- The DTMs are based on high-resolution imagery from the HiRISE instrument on NASA’s Mars Reconnaissance Orbiter. HiRISE imagery has been widely applied to the classic stereo method of combining two images taken from slightly different angles to create a 3D picture of the landscape. However, conventional stereo techniques have limitations when applied to relatively homogeneous regions like the rover’s landing site. The team used an innovative technique called ‘Shape from Shading’ in which the intensity of reflected light in the image is translated into information on surface slopes. This slope data is integrated into the stereo imagery, giving an improved estimate of the 3D surface, achieving the best resolution possible in the reconstructed landscape, showing small-scale features like dune ripples and other rough surfaces.

- Oxia Planum lies at the boundary where many channels emptied into the vast lowland plains. Observations from orbit show that the region exhibits layers of clay-rich minerals that were formed in wet conditions some four billion years ago, likely in a large body of standing water. The rover contains a suite of instruments, including a drill, to examine the site for signs of biosignatures.

- The models were presented at the EPSC-DPS (European Planetary Congress-AAS Division for Planetary Sciences) Joint Meeting 2019 in Geneva on Monday 16 September 2019.

• September 6, 2019: The ExoMars carrier module and descent module containing the lander platform Kazachok have been integrated in Turin, Italy. A structural-thermal model of the rover is contained inside. 25)

ExoMars2022_Auto20

Figure 32: In this photo, members of the team stand in front of the integrated units. From bottom to top is the carrier module (silver/grey), the rear jacket of the descent module (white, middle) that protects the landing platform, and the landing platform itself (top). A front shield will also be placed on top (image credit: Thales Alenia Space)

- The composite craft will now move on to Cannes, France for environmental testing, while the Rosalind Franklin rover undergoes environmental testing in Toulouse, France.

• August 27, 2019: The Rosalind Franklin ExoMars rover has completed its construction activities in the UK and will now depart to France for testing under the conditions of the Red Planet’s environment. 26)

- The final pieces of the rover’s scientific suite of instruments were attached at the Airbus Defence and Space site in Stevenage over the last weeks. The finishing touches included the ‘eyes’ of the rover: the high-resolution cameras that will provide panoramic and close-up images of the terrain that the rover will explore once on Mars in 2021.

- The primary goal of the mission is to determine if there has ever been life on Mars, and to better understand the history of water on the planet. The rover will seek out interesting geological locations to examine with its scientific tools and to drill to retrieve underground samples, on a quest to tackle these questions.

- As such, the rover was assembled in a sterile cleanroom under stringent cleanliness rules to avoid that organics, including traces of human life, are accidentally carried to Mars and contaminate the samples.

- After 18 months of activities at Stevenage, the rover has now been sealed up and waved off from the UK. Its next stop is Airbus Toulouse, France where it will undergo four months of intense testing to confirm it is compatible with the mission operations and the martian environment.

- “Completing the build of the Rosalind Franklin rover under the strict cleanliness requirements, with all the science instruments onboard, is a major milestone of our ExoMars program. It is thanks to the dedication of all the teams involved that we are able to celebrate this moment today,” says David Parker, ESA’s Director of Human and Robotic Exploration.

- “We’re looking forward to completing the final rounds of tests before the rover is declared flight ready and closed inside the landing platform and descent module that will deliver it safely to the surface of Mars.”

• August 20, 2019: The full suite of scientific instruments, including cameras that will give us our eyes on Mars, the drill that will retrieve pristine soil samples from below the surface, and the onboard laboratory that will seek out signs of life are all installed on the ExoMars rover. 27)

- The rover, named after the pioneering scientist Rosalind Franklin, is part of the ESA-Roscosmos ExoMars program, and is nearing completion at Airbus Defence and Space, Stevenage, UK. The rover is now seen with its recently added PanCam, which sits on top of a mast that rises 2 m above the ground. PanCam will be fundamental in the day-to-day scientific operations of the rover to assist with scientific decisions on where to drive and drill.

- Determining whether life ever existed on the Red Planet, or still does today, is at the heart of the ExoMars program. While spacecraft exploring Mars in the last decades have shown that the surface is dry and barren, billions of years ago it was much more reminiscent of Earth, with water flowing in rivers and lakes, perhaps seas. If life ever began in this very early period, scientists think that the best chances to find evidence for it is to look underground, in ancient regions of Mars that were once influenced by water.

- The Rosalind Franklin rover will land in what scientists think might have been an ancient ocean, close to the boundary where channels from the southern highlands of Mars connect to the smooth northern lowlands. After the initially wet era in the planet’s early history, lavas from volcanic eruptions covered large areas of Mars, some resisting erosion until today. This means that the landing site’s underlying materials may only have been exposed recently, initially protecting them from space radiation and later making them accessible to the rover and its analytical tools.

- PanCam, with its stereo and high-resolution cameras will provide detailed views of geologically interesting features in visible and near-infrared wavelengths, and together with measurements made by the spectrometers, will tell us what the rocks are made of and if they were influenced by water in the past. In select locations the drill will retrieve samples from up to 2 m below the surface, delivering them to the onboard science laboratory for detailed analysis to sniff out signs of biological signatures.

- A camera on the bottom of the drill unit will provide close-up images of the soil that is churned out by the drilling action. When the drill is in ‘stowed’ position the camera will be able to image the area in front of the rover. The Clupi (Close-up imager) recently underwent final calibration tests at ESA’s technical facility in the Netherlands, before being shipped to Stevenage to be attached to the drill unit (see Figure 41).

- In addition to the cameras, spectrometers, drill and analytical lab, the rover also has sub-surface sounding radar and neutron detector.

- “Our rover has really taken shape,” says Jorge Vago, ESA’s ExoMars rover project scientist. “We have an incredibly powerful scientific payload to explore the surface and subsurface of Mars on our quest to find biosignatures.”

- With the scientific suite of instruments onboard, the rover is sealed up in a dedicated cleanroom. Once final checks have been completed, the rover will be transported from the UK to Toulouse, France. There it will undergo environmental testing to confirm it is ready for the conditions on Mars. Once complete it will move on to Cannes, France for final integration with the lander platform, named Kazachok, and with the descent module and carrier module that will transport the mission from Earth to Mars.

- The mission is foreseen for launch in just under a year from now (the launch window is 26 July–13 August 2020) on a Russian Proton-M launcher, arriving at Mars in March 2021.

ExoMars2022_Auto1F

Figure 33: The Rosalind Franklin ExoMars rover recently had its Panoramic Camera system (PanCam) fitted. The camera suite sits on top of a mast 2 m above ground level, and will be fundamental in the day-to-day scientific operations of the rover to assist with scientific decisions on where to drive and drill. (image credit: Airbus, M. Alexander)

• August 16, 2019: The ExoMars mission will see Rosalind Franklin the rover and its surface platform Kazachok land on the Red Planet in 2021. From fine-grained soil to large boulders and slopes, the rover has to be able to move across many types of terrain, collect samples with a 2 m-long drill and analyze them with instruments in its onboard laboratory. 28)

- This second episode about ExoMars features the challenges of leaving the surface platform, overcoming obstacles and walking on dunes.

- ESA, Roscosmos, Thales, Airbus and RUAG engineers put a full-sized model through a series of tests to fine-tune how the rover will move from its landing platform onto the martian terrain.

- Rovers on Mars have previously been caught in sand, and turning the wheels dug them deeper – just like a car stuck in mud or snow. To avoid this, Rosalind the rover has a unique locomotion mode called ‘wheel walking’.

Figure 34: ExoMars – Moving on Mars (video credit: ESA, Uploaded on 16 August 2019)

• August 12, 2019: As the second ExoMars mission, comprising a rover and surface science platform, progresses towards launch next year, teams continue to troubleshoot the parachute design following an unsuccessful high-altitude drop test last week. 29)

- The European-built Rosalind Franklin rover and the Russian-led surface platform, Kazachok, are nearing completion. They will be encapsulated in a descent module, and transported to Mars by a carrier module, following launch on a Proton rocket from Baikonur.

- The descent module needs two parachutes – each with its own pilot chute for extraction – to help slow the craft prior to landing. Following separation of the parachutes, the speed must be suitable for the braking engines to safely deliver the landing platform and the rover onto the surface of Mars. The entire sequence from atmospheric entry to landing takes just six minutes.

- As part of the planned testing prior to launch, several parachute tests were scheduled at the Swedish Space Corporation Esrange site. The first took place last year and demonstrated the successful deployment and inflation of the largest main parachute in a low-altitude drop test from 1.2 km, deployed by a helicopter. The parachute has a diameter of 35 m, which is the largest parachute ever to fly on a Mars mission.

- On 28 May this year, the deployment sequence of all four parachutes was tested for the first time from a height of 29 km – released from a stratospheric helium balloon. While the deployment mechanisms activated correctly, and the overall sequence was completed, both main parachute canopies suffered damage.

- Following hardware inspection, adaptations were implemented to the design of the parachutes and bags ready for the next high-altitude test, which was conducted on 5 August, this time just focusing on the larger, 35 m diameter, parachute.

- Preliminary assessment shows that the initial steps were completed correctly, however damages to the canopy were observed prior to inflation, similar to the previous test. As a result, the test module descended under the drag of the pilot chute alone.

- “It is disappointing that the precautionary design adaptations introduced following the anomalies of the last test have not helped us to pass the second test successfully, but as always we remain focused and are working to understand and correct the flaw in order to launch next year,” says Francois Spoto, ESA’s ExoMars Team Leader.

- All hardware, videos and recorded telemetries have now been recovered and are currently under evaluation. The analysis should reveal the root cause of the anomaly and will be able to guide the way forward in terms of further modifications that might be required to the parachute system before subsequent test opportunities.

- A further high-altitude test is already foreseen for the first main parachute before the end of this year. The next qualification attempt of the second main parachute is then anticipated for early 2020.

- In parallel, the teams are investigating the possibility to manufacture additional parachute test models and conducting ground-based simulations to mimic the dynamic nature of parachute extraction, since there are not many opportunities for full-scale high-altitude drop tests.

- Furthermore, in addition to the regular forum of exchanges between ESA and NASA experts, a workshop of Mars parachute specialists will convene next month to share knowledge.

- “Getting to Mars and in particular landing on Mars is very difficult,” adds Francois. “We are committed to flying a system that will safely deliver our payload to the surface of the Mars in order to conduct its unique science mission.”

ExoMars2022_Auto1E

Figure 35: Sizes of key components of the ExoMars 2020 mission. The parachutes that will help slow the descent module through the martian atmosphere are compared in size to the iconic landmark of Elizabeth Tower ('Big Ben'), in London, UK. The descent module, which will deliver the surface platform and rover to the martian surface, is compared with the height of a human. The rover is stowed inside the surface platform, and will drive off one of the two ramps that will be deployed after landing (image credit: ESA)

- The mission is scheduled for launch in the window 25 July–13 August 2020, arriving at Mars in March 2021. After driving off the surface platform, Rosalind Franklin rover will explore the surface of Mars, seeking out geologically interesting sites to drill below the surface, to determine if life ever existed on our neighbor planet.

- The rover is currently nearing completion at Airbus Defence and Space, Stevenage, UK, and will soon begin its environmental test campaign at Airbus Toulouse, France. At the same time, the flight carrier module comprising the descent module and lander platform will begin its final round of testing at Thales Alenia Space, Cannes, France. The rover will be integrated into the spacecraft in early 2020.

- The ExoMars program is a joint endeavour between ESA and Roscosmos. In addition to the 2020 mission, it also includes the Trace Gas Orbiter (TGO) launched in 2016. The TGO is already both delivering important scientific results of its own and relaying data from NASA’s Curiosity Mars rover and Insight lander. It will also relay the data from the 2020 mission once it arrives at Mars in March 2021.

• July 22, 2019: An ambitious instrument for ESA’s ExoMars 2020 mission has passed its testing in conditions resembling those on the Red Planet. It will now be transported to Russia for its acceptance review, followed by integration onto the Kazachok Surface Platform, scheduled for launch this time next year. 30)

- At about 8 x 8 x 20 cm plus a trio of antennas, ESA’s LaRa (Lander Radioscience experiment) is a bit bigger than a 1 liter milk carton. But it functions as a high-performing transponder, tasked with maintaining an extremely stable direct radio-frequency link between Earth and Mars for a full martian year – two Earth years – once ExoMars has touched down.

- Proposed by the Royal Observatory of Belgium, LaRa has been developed through ESA’s PRODEX program – focused on developing science experiments for space – and funded by the Belgian Space Policy Office.

- The latest testing of LaRa took place in ESA’s Mechanical Systems Laboratory (MSL) at the Agency’s ESTEC technical heart in Noordwijk, the Netherlands. This is a small-scale version of the adjacent ESTEC Test Center, able to perform a wide range of space-simulating tests, but serving spacecraft instruments, subsystems or minisatellites rather than full-size missions.

- Following vibration testing on one of the MSL shaker to simulate the harsh conditions of launch, atmosphere re-entry, descent and Mars landing, LaRa was then placed inside a thermal vacuum chamber for nearly two weeks to perform functional testing in hot and cold conditions.

ExoMars2022_Auto1D

Figure 36: LaRa inside its thermal vacuum chamber during July 2019 testing, seen with its three antennas: two to transmit, for redundancy, and one to receive (image credit: ESA, M. Cowan)

- It was at first placed in high vacuum to ‘outgas’ fumes that might otherwise pose problems in space and to test its behavior in conditions similar to that of the voyage to Mars. LaRa was then subjected to simulated Martian conditions, with 6 millibars of carbon dioxide added to the chamber, at the same time as the temperature was cycled up and down.

- LaRa’s electronic box will be kept warm by the ExoMars lander’s heater. LaRa’s antennas however are installed outside of this thermally controlled environment and will have to endure extreme temperature cycling: nights as cold as -90°C, with daytime reaching up to a relatively comfortable 10°C. The resulting novel antenna design was developed in cooperation between ESA and Université Catholique de Louvain.

ExoMars2022_Auto1C

Figure 37: ExoMars 2020 rover atop its Surface Platform (image credit: ESA)

Figure 38: Qualification shaker test of two antennas – seen within protective radomes – for the LaRa instrument, headed to Mars on the ExoMars Surface Platform. ESA’s LaRa is a high-performing transponder, tasked with maintaining an extremely stable direct radio-frequency link between Earth and Mars for a full Martian year – two Earth years – once ExoMars has touched down. This vibration testing simulates the harsh conditions of launch, atmosphere re-entry, descent and Mars landing, and was carried out on the 22 kN electrodynamic vibration system of ESA’s Mechanical Systems Laboratory (video credit: ESA)

- LaRa will receive an X-band radio signal from Earth that it will then relay back again. By carefully measuring slight Doppler shifts in this two-way signal over time, researchers will be able to identify tiny periodic shifts in the position of the Surface Platform over time, opening up an invaluable view into the Martian interior.

- “LaRa will reveal details of the planet’s internal structure, and allow precise measurements of its rotation and orientation,” comments Véronique Dehant of the Royal Observatory Belgium, the instrument’s principal investigator.

ExoMars2022_Auto1B

Figure 39: Spectrum analyzer snapshot showing LaRa signal acquisition followed by precise Doppler tracking. At about 8 x 8 x 20 cm plus a trio of antennas, ESA’s Lander Radioscience experiment, or LaRa for short, is a bit larger than a 1-liter milk carton. But it functions as a high-performing transponder, tasked with maintaining an extremely stable direct radio-frequency link between Earth and Mars for a full Martian year – two Earth years – once ExoMars has touched down (image credit: ESA)

- “It will also detect variations in angular momentum due to redistribution of masses, such as the seasonal mass transfer in carbon dioxide when part of the atmosphere freezes into ice. Last but not least LaRa will also allow the accurate determining of the precise landing position.”

- As a terrestrial analogue, imagine a spinning egg – you can tell just by looking at its wobbled movement whether its inside is liquid or hard-boiled.

- But the challenge is maintaining the ultra-stable direct radio link during LaRa’s planned operating schedule of two 1-hour sessions per week, especially when Mars orbits to its maximum 401 million km away from Earth.

- On the Earthly side, we will be using giant 70 m class antennas of NASA’s Deep Space Network or the Russian equivalent at Kalyazin or Bear Lakes, to transmit the X-band radio signal towards Mars and to pick up its delayed replica relayed by LaRa and ‘Doppler-signed’ by Mars – All this with as low as 5 W of radio power generated by LaRa,” explains ESA microwave engineer Václav Valenta, managing the LaRa project.

- “But LaRa on Mars will need sufficient sensitivity to detect radio signal as low as few attowatts - trillionths (10-18) of a watt. When Mars and Earth come closer – at their nearest just 54.6 million km – then Europe’s Estrack ground stations will be able to close the link with LaRa as well.

- Such scenarios were successfully tested during two radio frequency compatibility test campaigns in ESA’s ESOC mission control center in Darmstadt, Germany.”

ExoMars2022_Auto1A

Figure 40: The combined European and Russian LaRa team during progress meeting at IKI in Russia (image credit: ESA)

- The scanty Martian atmosphere is a complicating factor. On the plus side its presence enables convection to carry away waste heat. But while it is more than a hundred times thinner than Earth’s air, radio frequency operation within it still leaves a risk of ‘corona’ effects – ionization of local gases which can lead to interference and potentially harmful lightning-like discharge.

- “To eliminate any corona risk, LaRa was previously subjected to rigorous analysis and testing at ESA’s High Power Radio Frequency Laboratory in Valencia, Spain,” adds Václav.

- “It has also undergone testing inside ESTEC’s Maxwell chamber for electromagnetic compatibility, to check all its elements work properly together. Moreover, a dedicated shock model of LaRa was developed and tested at the ESTEC Test Center to verify the robustness of LaRa against mechanical shocks induced by the carrier module separation and heat-shield jettison.”

- Once testing of LaRa in the MSL was complete the instrument was moved to ESA’s Metrology Laboratory, for precision measurements of its surface flatness. It needs to be precise down to a scale of a few dozen micrometers – thousandths of a millimeter – for optimal fit and thermal contact with its lander interface, helping to maintain a good operational temperature on Mars.

- From ESTEC LaRa will be transported to the Space Research Institute of the Russian Academy of Sciences, IKI (Moscow), for final acceptance testing. It will then be moved to Cannes in France where it will be integrated on the Surface Platform with the rest of the lander and tested at the full-assembly level.

- “The opportunity to fly opened up at the end of 2015 and the actual developments towards the flight model started only one year later, so the LaRa team has had to work very hard to come to this point,” adds Václav. ExoMars 2020 is due to be launched by the Russian Proton launcher from Baikonur in Kazakhstan in July 2020.

• July 11, 2019: Exhibit 0102.226 may look like just a rock, but this dark and patchy mass is actually a piece of Mars, ejected when an asteroid or comet struck the Red Planet and sent chunks flying towards Earth. 31)

ExoMars2022_Auto19

Figure 41: In this photo, the martian fragment is captured alongside CLUPI (Close-Up Imager), a camera system designed to acquire high-resolution, color, close-up images, CLUPI will be one of many instruments onboard the ExoMars rover, due for launch in 2020 (image credit: ESA)

- Having survived its journey through Earth’s atmosphere, this alien rock was discovered in the Sayh al Uhaymir region of Oman, in 2001.

- The alien rock is at ESA’s ESTEC technology center in the Netherlands, on loan from the Natural History Museum in Bern, Switzerland, to support the calibration campaign for the ExoMars 2020 mission.

- Taking images at the tens of micrometers to centimeter scale, the camera will help scientists understand the environment in which martian rocks and materials formed.

Planetary Defence

- Of the 60,000 or so meteorites that have been discovered on Earth, 124 have been identified as having a martian origin.

- Just like Earth, Mars is vulnerable to space rocks that hurtle through the Solar System. Unlike Earth, its thin atmosphere means they often strike the surface intact. The Red Planet is also lacking in another vital area, with no inhabitants creating space agencies and methods of planetary defence!

- Asteroids with the potential to strike Earth are being monitored by ESA’s Near-Earth Object Coordination Center, which coordinates observations of small bodies in the solar system – such as asteroids, comets and even minor planets – to evaluate and monitor the threat posed by any that could come near Earth.

- ESA’s Planetary Defence Office conducts regular observation campaigns to look for risky space rocks, predicting their orbits, producing impact warnings when necessary and working towards mitigating the damage of, and even preventing altogether, an asteroid strike.

- CLUPI was built by an industrial team led by TASiCH in Zürich/Switzerland. The Principal Investigator is Jean-Luc Josset, from the Space Exploration Institute, Neuchatel/Switzerland.

• June 28, 2019: The full parachute system that will help deliver the ExoMars rover and a surface science platform to the martian surface has completed a full-scale high-altitude deployment sequence test, although unexpected damage to the main parachutes occurred. 32)

- Meanwhile, the main elements of the descent module hardware, including the heat shield that will protect the lander as it enters the atmosphere of Mars, have been delivered to Thales Alenia Space in Turin, Italy, this week. The European carrier spacecraft that will carry the mission from Earth to Mars, and the Russian landing platform named Kazachok already arrived in Italy earlier this year. The rover, named Rosalind Franklin, is currently being fitted with hardware and its scientific payload in Stevenage, UK. Once fully integrated, the hardware will be tested to ensure it is ready for the journey to space, and operations on Mars.

- As part of the planned upcoming testing, the parachute system will be adjusted to address a problem observed in the most recent high-altitude drop test, conducted on 28 May at the Swedish Space Corporation Esrange facility in Kiruna.

- The descent module needs two parachutes – each with its own pilot chute for extraction – to help slow the craft prior to landing. Following separation of the parachutes, the speed must be suitable for the braking engines to safely deliver the landing platform and the rover onto the surface of Mars. The entire sequence from atmospheric entry to landing takes just six minutes.

- Last year the second and largest main parachute was successfully tested in a low-altitude drop test from an altitude of 1.2 km, deployed by a helicopter. The parachute has a diameter of 35 m, which is the largest parachute ever to fly on a Mars mission. The most recent test took place from a height of 29 km with the aid of a stratospheric helium balloon, and focused on the deployment sequence of all four parachutes.

- A precise release of the drop test vehicle occurred at the planned altitude and the first pyrotechnic mortar activated normally to release the first pilot chute – which inflated correctly.

- The main parachute lid release mechanism worked and the first main parachute also inflated well, but several radial tears in the fabric were observed immediately following extraction from the main parachute bag, before the parachute experienced maximum load.

- The second pyrotechnic mortar also worked normally, ejecting the second pilot chute, which also inflated as expected. The second main parachute was extracted from its bag, but one radial tear was observed, again before reaching peak inflation loads.

- All the data onboard the drop test vehicle were recovered and analyzed. These data include acceleration, angular rates, magnetometer, GPS, and barometer data, together with camera footage.

- Detailed analysis of the telemetry parameters recorded during the test confirmed that a good level of the expected aerodynamic drag was nevertheless achieved in spite of the parachute tears. The overall descent time of the entire test was also close to prediction.

- The second parachute was quickly recovered and examined while it took a few days to identify and recover the first parachute that had travelled over 100 km following separation.

- “Hardware recovery was essential to help define necessary improvements prior to the next test,” says Francois Spoto, ExoMars team leader.

- “We will implement design improvements to the parachute bags to ensure smoother extraction of the parachute, as well as reinforcements to the parachute itself to limit tear propagation in case some would still occur. The complex process of folding and packing the parachutes and hundreds of lines will also be examined.”

ExoMars2022_Auto18

Figure 42: ExoMars 2020 parachute deployment sequence (image credit: ESA)

- Two further parachute tests are planned for later in 2019.

- “Although the overall test sequence was successful, we always expected to encounter some problems while testing such a complex system,” says Francois.

- “This is why we test, test and test again, to overcome potential weakness and make sure we have the strongest system flying to Mars. We are working harder than ever to keep on track for our launch window next year.”

- The mission is scheduled for launch in July 2020, arriving at Mars in March 2021. After driving off the surface platform, Rosalind Franklin rover will explore the surface of Mars, seeking out geologically interesting sites to drill below the surface, to determine if life ever existed on our neighbor planet.

- The ExoMars program is a joint endeavour between ESA and Roscosmos. In addition to the 2020 mission, it also includes the Trace Gas Orbiter (TGO) launched in 2016. The TGO is already both delivering important scientific results of its own and relaying data from NASA’s Curiosity Mars rover and Insight lander. It will also relay the data from the 2020 mission once it arrives at Mars.

• May 8, 2019: A key set of scientific instruments developed for the ExoMars rover Rosalind Franklin passed tests last month to ensure compatibility with the martian environment. 33)

- The rover’s Analytical Laboratory Drawer (ALD) flight model completed its thermal and vacuum sessions in Turin, Italy, at a Thales Alenia Space facility.

- The ExoMars rover will be the first of its kind to both roam the Mars surface and to study it at depth. Rosalind Franklin will drill down to two meters into the surface to sample the soil, analyze its composition and search for evidence of past – and perhaps even present – life hidden underground.

- A miniature laboratory inside the rover will analyze the samples and send data and images back to Earth to the scientific community, eager to learn more about our neighboring planet.

Under the hood

- The ExoMars rover ALD system is designed by Thales Alenia Space in Turin and carries a set of four complex mechanisms developed by OHB in Munich, Germany, that can process and supply soil samples to three scientific instruments. Dedicated control electronics and a thermal control system will keep the system working and operating at the required temperatures while preserving the Mars samples and possible traces of organic molecules.

- The instruments will make a detailed study of the composition and chemistry of the soil samples collected by the rover’s drill. Following a process similar to a factory floor, once acquired from the drill, samples are dropped into a crushing station and pulverized. The fine powder is then dosed and moved on to the next area for precise distribution – either on a refillable container or in thumb-sized ovens where the specimens are analyzed.

- The ALD (Analytical Laboratory Drawer) houses three instruments to search for signs of life on Mars.

- The MicrOmega instrument uses visible and infrared light to characterize minerals in the samples; a Raman spectrometer (developed by INTA) uses a laser to identify mineralogical composition and lastly a combination of a Laser Desorption Mass Spectrometer and a Gas Chromatograph (part of the Mars Organics Molecule Analyser, MOMA) will study and identify soil chemistry. The most scientifically interesting samples, will be dosed into the MOMA ovens. The ALD has 31 ovens, where samples can be heated and the vapor and gases emitted will be analyzed with gas chromatography techniques to look for traces of organic compounds.

ExoMars2022_Auto17

Figure 43: Photo of the ExoMars Analytical Laboratory Drawer (image credit: Thales Alenia Space)

Roving laboratory

- The instruments must work with the highest level of precision in an environment that is far from the pristine interiors common in laboratories on Earth. Rosalind Franklin can expect harsh days and nights on Mars with temperatures dropping to –120°C outside, and –60°C inside the rover.

- “The ALD behaved well with good results from both mechanisms and instruments during operations,” says Frédéric Didot, ESA ExoMars ALD system engineer.

- “The Mars environment tests were performed according to the project’s schedule thanks to the effort and dedication of industry and instrument teams supporting this amazing project.”

- The Exomars mission is in its final stages of preparation, the landing platform was delivered by Roscosmos’ prime contractor Lavochkin from Moscow to Turin in March. The ALD Flight Model having now passed these martian simulation tests is shipping to the UK for an arrival at an Airbus site in Stevenage on 8 May where it will be integrated with the rover.

Figure 44: This visualization presents a 360º view of the ExoMars rover, focusing on its interior components. The rover, named 'Rosalind Franklin' after the prominent scientist who co-discovered the structure of DNA, will be the first rover capable of drilling down 2 m, where ancient biomarkers may still be preserved from the harsh radiation environment on the surface. The drill is housed in the box at the front of the rover, and will deliver samples to the large onboard laboratory for analysis inside the rover. The drill also contains a multispectral imager, which will image the walls of the borehole created by the drill to study the mineralogy and rock formation. A dedicated "close-up" imager will acquire high-resolution, color, close-up images of outcrops, rocks, soils, drill fines and drill core samples (video credit: ESA/ATG medialab)

Legend to Figure 44: Navigation cameras (at the top of the mast) and ‘localization’ cameras (at the base of the mast) are used to determine where the rover is and where it will move. High-resolution scientific cameras also sit at the top of the mast and will provide stereo and 3D imagery of the terrain around the rover. An infrared spectrometer located with the cameras will determine the major mineral composition of rocks, outcrops and soils.

A ground-penetrating radar unit situated at the rear of the rover will provide a detailed view of the Red Planet's shallow subsurface structure by sounding the upper layers of its crust and detecting subsurface water-ice. This will give three-dimensional geological context of the terrain covered by the rover.

Power is supplied to the rover by solar panels. These are folded during the journey to Mars and opened once the rover is on the surface. The rover is is designed to survive the cold martian nights with the help of batteries and heater units.

• April 4, 2019: The module that will carry the ExoMars rover and surface science platform from Earth to Mars arrived on 2 April at Thales Alenia Space in Turin, Italy, from OHB System in Bremen, Germany. 34)

- The carrier module also provides the communication link between Earth and the spacecraft, and will support navigation with star trackers and Sun sensors. It also carries propellant required for attitude control and maneuvers after launch and during cruise by means of its16 20-N thrusters that will use up to 136 kg of hydrazine propellant.

ExoMars2022_Auto16

Figure 45: Photo of the carrier module at Thales Alenia Space in Turin, Italy (image credit: Thales Alenia Space)

• March 26, 2019: The platform destined to land on the Red Planet as part of the next ExoMars mission being shipped to Europe for final assembly and testing. 35)

ExoMars2022_Auto15

Figure 46: Photo of the ExoMars Lander Platform Kazachok (image credit: Roscosmos)

• March 21, 2019: The platform destined to land on the Red Planet as part of the next ExoMars mission has arrived in Europe for final assembly and testing – and been given a name. 36)

- An announcement was made by the Russian State Space Corporation Roscosmos of the platform's new name: ‘Kazachok’.

- In February, the rover was named ‘Rosalind Franklin’ after the prominent scientist behind the discovery of the structure of DNA. Now the surface platform also has a name. Kazachok literally means little Cossack, and it is a lively folk dance.

- Once on the martian surface, Rosalind the rover will drive off the Kazachok platform to perform scientific investigations. Kazachok will remain stationary to investigate the climate, atmosphere, radiation and possible presence of subsurface water in the landing site.

ExoMars2022_Auto14

Figure 47: The platform destined to land on the Red Planet as part of the next ExoMars mission arrived in Europe for final assembly and testing on 19 March 2019 (image credit: SAGAT Handling)

- Kazachok left Russia after being carefully packed to meet planetary protection requirements, making sure to not bring terrestrial biological contamination to Mars. It was shipped to Turin, Italy, on an Antonov plane along with ground support equipment and other structural elements.

ExoMars2022_Auto13

Figure 48: ExoMars surface platform packed for Europe (image credit: Roscomos/Lavochkin)

- The Italian division of Thales Alenia Space will perform final assembly and testing of the mission in close cooperation with ESA.

- There will be more components arriving to Italy throughout the year, including avionics equipment, the carrier and rover modules and thermal protection systems for the landing platform.

- Several test campaigns with ExoMars models are running in parallel in preparation for launch and landing.

- Recent shock tests in Russia have successfully proved the mechanical compatibility between the spacecraft and the adapter for the Proton-M rocket that will set ExoMars on its way to Mars.

- The ExoMars teams have also just completed the egress and locomotion tests with a full-sized model of the rover in Zürich, Switzerland.

- There the rover drove off ramps and through all the terrain conditions that it might encounter on Mars: different types of soil, various obstacle shapes and sizes and all kind of slopes.

- “We have now a very challenging schedule of deliveries and tests both in Italy and France. The coordination between the Russian and European teams is key to timely reach the Baikonur Cosmodrome in 2020,” says François Spoto, ESA’s ExoMars team leader.

• March 13, 2019: Mars is a potential abode of past and perhaps even present-day life. Accordingly, international planetary protection regulations require any mission sent to the Red Planet to undergo rigorous sterilization, to prevent terrestrial microbes from piggybacking their way there. 37)

- The Lab’s Alan Dowson explains: “This is the ‘qualification model’ of the 35-m diameter main parachute for ExoMars 2020, basically a test version which allows us to finalize our sterilization procedures ahead of the flight model chute’s arrival.

- “This version has been threaded with thermal sensors, allowing us to see how long it takes to reach the required sterilization temperature in all parts of the folded parachute, even in the hardest to heat points. Our target was to sterilize at 125 °C for 35 hours and 26 minutes, and the oven took about 44 hours to reach that temperature to begin with.”

- The oven is part of the Lab’s 35 m2 ‘ISO Class 1’ cleanroom, one of the cleanest places in Europe. All the cleanroom’s air passes through a two-stage filter system. Anyone entering the chamber has to gown up in a much more rigorous way than a hospital surgeon, before passing through an air shower to remove any remaining contaminants.

- “If you imagine our clean room as being as big as the entire Earth’s atmosphere, then its allowable contamination would be equal to a single hot air balloon,” adds Alan. “Our ISO 1 rating means we have less than 10 dust particles measuring a tenth of one millionth of a meter in diameter per cubic meter of air.”

- The mostly nylon and Kevlar parachute, packed into an 80-cm diameter donut-shaped unit, was delivered by Italy’s Arescosmo company. This qualification model will now be sent back there for testing, to ensure this sterilization process causes no change to the parachute’s material properties.

- Alan explains: “We will receive the parachute flight model later this spring for the same sterilization process – identical to this version, except without any thermal sensors.”

- ExoMars’s smaller first stage 15-m diameter parachute has already gone through sterilization using the oven. This is the parachute that opens during initial, supersonic atmospheric entry, with the second, larger chute opening once the mission has been slowed to subsonic velocity.

- The Lab has also tackled a variety of ExoMars instruments and subsystems, but this second stage subsonic parachute is the single largest item to be sterilized. The sterilization process aims to reduce the overall mission ‘bioburden’ to a 10 thousandth of its original level.

ExoMars2022_Auto12

Figure 49: A technician places a nearly 70 kg parachute designed for ESA and Roscosmos’s ExoMars 2020 mission inside the dry heater sterilizer of the Agency’s Life, Physical Sciences and Life Support Laboratory, based in its Netherlands technical center (image credit: ESA, M. Cowan)

• February 28, 2019: Rovers are versatile explorers on the surface of other planets, but they do need some training before setting off. A model of Rosalind Franklin rover that will be sent to Mars in 2021 is scouting the Atacama Desert, in Chile, following commands from mission control in the United Kingdom, over 11,000 km away. 38)

- The ExoFiT field campaign simulates ExoMars operations in every key aspect. During the trial, the rover drove from its landing platform and targets sites of interest to sample rocks in the Mars-like landscapes of the Chilean desert.

- ESA’s human and robotic exploration director, David Parker, explains “we call these tests ‘ExoFit’ - meaning ExoMars-like Field Testing. The results will help us prepare the real Rosalind Franklin rover for the challenge of safe operation far across the Solar System.”

- The team behind the exercise, a mix of scientists and engineers, is simulating all the challenges of a real mission on the Red Planet, including communication delays, local weather conditions and tight deadlines.

- “We make teleoperations as martian as possible,” explains Juan Delfa, ESA’s robotics engineer overseeing the activities.

- “We are continuously working against the clock as you need to take into account signals from Mars take between 4 and 24 minutes to arrive at Earth while blasts of wind might cover the rover’s solar panels with dust, and that we only have a few hours to decide what the rover should do next,” adds Juan.

- The campaign started on 18 February and will run until 1 March. This is the first time that ESA’s European Center for Space Applications and Telecommunications (ECSAT), in Harwell, UK, is acting as a mission control.

- With over 60 people from different space and scientific organizations involved, “it is all about getting the teams to practice with real mission issues. We are learning how to teleoperate a rover in the field and to make decisions in the most efficient way,” says Lester Waugh, ExoFiT mission manager from Airbus.

ExoMars2022_Auto11

Figure 50: The path taken by the ExoFit model during a campaign at the Atacama Desert, in Chile – following commands from mission control in the United Kingdom, over 11,000 km away. The ExoFiT field campaign simulates ExoMars operations in every key aspect. During the trial, the rover drove from its landing platform and targets sites of interest to sample rocks in the Mars-like landscapes of the Chilean desert. The team behind the exercise, a mix of scientists and engineers, is simulating all the challenges of a real mission on the Red Planet, including communication delays, local weather conditions and tight deadlines. The rover is equipped with a set of cameras and proxy instruments, such as a radar, a spectrometer and a drill, to replicate martian operations. Scientists in the UK must take decisions on the next steps with the little information they have – a combination of the data transmitted by the rover and satellite images of the terrain. The ExoFiT teams in the UK set the exploration path and activities for the rover, which travels at a speed of 2 cm/s avoiding rocks and overcoming slopes (image credit: ESA/Airbus)

ExoMars2022_Auto10

Figure 51: The ExoFit model of the Rosalind Franklin rover that will be sent to Mars in 2021 scouting the Atacama Desert, in Chile, following commands from mission control in the United Kingdom, over 11,000 km away. The ExoFiT field campaign simulates ExoMars operations in every key aspect. During the trial, the rover drove from its landing platform and targets sites of interest to sample rocks in the Mars-like landscapes of the Chilean desert (image credit: Airbus).

- The rover is equipped with a set of cameras and proxy instruments, such as a radar, a spectrometer and a drill, to replicate martian operations.

- As it departed from the ‘landing site’ in a remote barren area, the first thing this prototype of ExoMars did was share a panoramic image and its location coordinates with mission control.

• February 7, 2019: The ExoMars rover that will search for the building blocks of life on the Red Planet has a name: Rosalind Franklin. The prominent scientist behind the discovery of the structure of DNA will have her symbolic footprint on Mars in 2021. 39)

- A panel of experts chose ‘Rosalind Franklin’ from over 36 000 entries submitted by citizens from all ESA Member States, following a competition launched by the UK Space Agency in July last year.

- The ExoMars rover will be the first of its kind to combine the capability to roam around Mars and to study it at depth. The Red Planet has hosted water in the past, but has a dry surface exposed to harsh radiation today.

- The rover bearing Rosalind Franklin’s name will drill down to two meters into the surface to sample the soil, analyze its composition and search for evidence of past – and perhaps even present – life buried underground.

ExoMars2022_AutoF

Figure 52: Rosalind Franklin with microscope in 1955 (1920-1958). Rosalind Elsie Franklin was a British chemist and X-ray crystallographer who contributed to unravelling the double helix structure of our DNA. She also made enduring contributions to the study of coal, carbon and graphite (image credit: MRC Laboratory of Molecular Biology)

- “This name reminds us that it is in the human genes to explore. Science is in our DNA, and in everything we do at ESA. Rosalind the rover captures this spirit and carries us all to the forefront of space exploration,” says ESA Director General Jan Woerner.

- The name was revealed this morning in the ‘Mars Yard’ at Airbus Defence and Space in Stevenage, in the United Kingdom, where the rover is being built. ESA astronaut Tim Peake met the competition entrants who chose the winning name, and toured the facility with UK Science Minister Chris Skidmore.

- “This rover will scout the martian surface equipped with next-generation instruments – a fully-fledged automated laboratory on Mars,” says Tim. “With it, we are building on our European heritage in robotic exploration, and at the same time devising new technologies.”

- The rover will relay data to Earth through the ExoMars TGO (Trace Gas Orbiter), a spacecraft searching for tiny amounts of gases in the martian atmosphere that might be linked to biological or geological activity since 2016.

- Rosalind has already a proposed landing site. Last November a group of experts chose Oxia Planum near the martian equator to explore an ancient environment that was once water-rich and that could have been colonized by primitive life.

Figure 53: ExoMars Rover: from concept to reality. This video focusses on the rover and explains what it plans to achieve on Mars (video credit: ESA)

- The second part of the ExoMars program is ongoing.

- In Stevenage, UK, a rover is being built that will carry a drill and a suite of instruments dedicated to exobiology and geochemistry research. It will be the first mission to combine the capability to move across the surface and to study Mars at depth.

- The primary goal of the ExoMars program is to address the question of whether life has ever existed on the red planet.

- The first part of the program was launched in March 2016 with the Trace Gas Orbiter. The second part is planned for launch in 2020 and comprises the rover and surface science platform.

On our way to Mars, and back

- Looking beyond ExoMars, bringing samples back from Mars is the logical next step for robotic exploration. ESA is already defining a concept for a sample return mission working in cooperation with NASA.

- “Returning martian samples is a huge challenge that will require multiple missions, each one successively more complex than the one before,” says David Parker, ESA’s Director of Human and Robotic Exploration.

- “We want to bring the Red Planet closer to home. We want to delve into its mysteries and bring back knowledge and benefits to people on Earth. Returned planetary samples are truly the gift that keeps on giving – scientific treasure for generations to come,” he adds.

- Long-term planning is crucial to realize the missions that investigate fundamental science questions like could life ever have evolved beyond Earth?

- ESA has been exploring Mars for more than 15 years, starting with Mars Express and continuing with the two ExoMars missions, keeping a European presence at the Red Planet into the next decade.

• February 7, 2019: ExoMars is a joint endeavour between ESA and Roscosmos. The rover is part of the 2020 mission, landing on Mars with a surface science platform in 2021. 40)

ExoMars2022_AutoE

Figure 54: The European ExoMars rover under construction at Airbus, Stevenage, in the UK (image credit: ESA - S. Corvaja)

• January 17, 2019: Navigation software destined for the ExoMars 2020 mission to the Red Planet has passed a rover-based driving test at ESA’s ‘Mars Yard’. 41)

- ESA’s ExoMars rover will drive to multiple locations and drill down to two meters below the surface of Mars in search of clues for past life preserved underground.

- A half-scale version of the ExoMars rover, called ExoMars Testing Rover (ExoTeR), maneuvered itself carefully through the red rocks and sand of the 9 x 9 m ‘Planetary Utilization Testbed’, nicknamed the Mars Yard, part of ESA’s Planetary Robotics Laboratory at ESTEC in the Netherlands.

Figure 55: A half-scale version of the ExoMars rover, called ExoMars Testing Rover (ExoTeR), maneuvered itself carefully through the red rocks and sand of 9 x 9 m Planetary Utilization Testbed, part of ESA’s Planetary Robotics Laboratory in its ESTEC technical center in the Netherlands (video credit: ESA)

- Carefully calculating its onward route, ExoTeR progressed at a rate of 2 m per minute – still several times faster than the actual ExoMars rover will drive, which will progress at 100 m per martian day.

- The two-day rover test was conducted by ESA robotic engineers, joined by a team from France’s space agency CNES in Toulouse. They have more than two decades of experience in autonomous navigation for planetary rovers, culminating in developing the ‘AutoNav’ suite of software that was doing the driving.

• November 27, 2018: The sun set on a week of trials for the ExoMars rover prototype named Charlie (in the foreground). The first of two field trials for the mission, known as ExoFiT, took place in the Tabernas desert in Spain between 13-26 October (Figure 56). 42)

- While Charlie was located in Spain, mission operators and instrument scientists were based over 1000 km away at mission control in Harwell, UK, near ESA’s ECSAT (European Center for Space Applications and Telecommunications), where ExoFit was managed. The distance was crucial as teams operating a rover on the Martian surface must contend with infrequent communication possibilities and must run science operations with what little information they have. The rover itself is designed to carry out activities such as a traverse or observations in between communication blackouts as well as send data to Earth in preparation for the next martian day.

- During the 10-day trial, the team practised driving the rover off its landing platform (in the background of this image), targeting sites of interest, and sampling rocks. Decisions were made based on data transmitted by the rover together with maps of the terrain.

- Naturally, the team encountered technical difficulties, to be expected in real test conditions. Rainfall disrupted events and forced the team to adapt and optimize their time. In the second week, the team managed to finish activities scheduled for two martian days in a single day.

- The scenarios in general tested the rover’s radar instrument, close-up imager, panoramic mast imager and drill, with more specific tests aimed at replicating what will be performed on the martian surface. Once on the Red Planet, the rover drill beneath the surface to look for signs of life.

- A lot is learned during these simulation studies to fine-tune equipment and train mission specialists. The issues encountered in the field trial will be addressed and tested again in a second field campaign introducing more complex autonomous rover operations.

- Set for February 2019, the second field trial will take place in the Atacama desert of Chile. Atacama is one of the most similar terrains on Earth to Mars, with the added benefit of drier weather and the nearby European Southern Observatory’s Paranal Observatory over the Tabernas desert.

- The operational challenges observed provide valuable inputs for the ExoMars rover and other planetary rovers such as the Sample Fetch Rover of the NASA-ESA Mars Sample Return mission. Currently in the concept phase, ESA is working with international partners to achieve its vision of Europe’s expanding role in space exploration.

ExoMars2022_AutoD

Figure 56: ExoMars rover field trials in the Tabernas desert in Spain (image credit: Airbus/ESA)

• November 9, 2018: The ExoMars Landing Site Selection Working Group has recommended Oxia Planum as the landing site for the ESA-Roscosmos rover and surface science platform that will launch to the Red Planet in 2020. - The proposal will be reviewed internally by ESA and Roscosmos with an official confirmation expected mid-2019. 43)

- At the heart of the ExoMars program is the quest to determine if life has ever existed on Mars, a planet that has clearly hosted water in the past, but has a dry surface exposed to harsh radiation today.

- While the ExoMars TGO (Trace Gas Orbiter), launched in 2016, began its science mission earlier this year to search for tiny amounts of gases in the atmosphere that might be linked to biological or geological activity, the rover will drive to different locations and drill down to two meters below the surface in search of clues for past life preserved underground. It will relay its data to Earth through the Trace Gas Orbiter.

- Both landing site candidates – Oxia Planum and Mawrth Vallis (Figure 59) – preserve a rich record of geological history from the planet’s wetter past, approximately four billion years ago. They lie just north of the equator, with several hundred kilometers between them, in an area of the planet with many channels cutting through from the southern highlands to the northern lowlands. Since life as we know it on Earth requires liquid water, locations like these include many prime targets to search for clues that may help reveal the presence of past life on Mars.

- “With ExoMars we are on a quest to find biosignatures. While both sites offer valuable scientific opportunities to explore ancient water-rich environments that could have been colonized by micro-organisms, Oxia Planum received the majority of votes,” says ESA’s ExoMars 2020 project scientist Jorge Vago. “An impressive amount of work has gone into characterizing the proposed sites, demonstrating that they meet the scientific requirements for the goals of the ExoMars mission. Mawrth Vallis is a scientifically unique site, but Oxia Planum offers an additional safety margin for entry, descent and landing, and for traversing the terrain to reach the scientifically interesting sites that have been identified from orbit.”

ExoMars2022_AutoC

Figure 57: One example of how the Oxia Planum landing site candidate for the ExoMars 2020 mission is being analyzed. The map outlines a boundary that encapsulates the range of possible landing ellipses, with some added margin. The colors represent the variety of surface terrains identified, including plains, channels, impact craters and wind-blown features, for example. It is not a geological map intended for scientific analysis, but rather a tool used to identify different surface textures and where potential hazards may lie (image credit: IRSPS/TAS; NASA/JPL-Caltech/Arizona State University)

Legend to Figure 57: The narrow ellipses with the black outline mark the most likely landing zones for the extreme case of the very beginning and end of the launch window respectively (the launch dictates the arrival inclination and there are other scenarios in between). The central touchdown point in Oxia Planum is the same regardless of the actual launch date in the 25 July–13 August 2020 launch window. -The background image is from the Thermal Emission Imaging System instrument on NASA’s Mars Odyssey orbiter.

ExoMars2022_AutoB

Figure 58: The OMEGA infrared spectrometer on board ESA’s Mars Express, and CRISM onboard NASA’s Mars Reconnaissance Orbiter (MRO), have identified iron-magnesium rich clays like smectite over hundreds of square kilometers around the Oxia Planum site. The origin of the clays – perhaps due to alteration of volcanic sediments – is of keen interest to researchers looking for a terrain where traces of life have been preserved and could be studied by a rover. This image was taken by MRO’s high resolution camera HiRISE and shows a relatively flat surface in this region. Images like these have been used in the assessment of the various landing site candidates (image credit: NASA/JPL/University of Arizona)

ExoMars2022_AutoA

Figure 59: The two candidates for the landing site of the ESA-Roscosmos rover and surface science platform that will launch to the Red Planet in 2020. Both landing site candidates – Oxia Planum and Mawrth Vallis – preserve a rich record of geological history from the planet’s wetter past billions of years ago. They lie just north of the equator, separated by a few hundred kilometers, in a region with many channels cutting through from the southern highlands to the northern lowlands. -The background used in this image is from NASA’s Viking orbiters (image credit: NASA/JPL/USGS)

- The Landing Site Selection Working Group also emphasized that the discoveries generated during the landing site selection process are essential to guide the science operations of the ExoMars rover.

- The recommendation was made today following a two-day meeting held at the National Space Centre in Leicester, UK, which saw experts from the Mars science community, industry, and ExoMars project present and discuss the scientific merits of the sites alongside the engineering and technical constraints.

- The quest to find the perfect landing site began almost five years ago, in December 2013, when the science community was asked to propose candidate locations. Eight proposals were considered in the following April, with four put forward for detailed analysis in late 2014. In October 2015, Oxia Planum was identified as one of the most compatible sites with the mission requirements – at that time with a 2018 launch date in mind – with a second option to be selected from Aram Dorsum and Mawrth Vallis. In March 2017, the down-selection identified Oxia Planum and Mawrth Vallis as the two candidates for the 2020 mission, with both undergoing a detailed evaluation over the last 18 months.

- On the technical side, the landing site must be at a suitably low elevation level, so that there is sufficient atmosphere and time to help slow the landing module’s parachute descent. Then, the 120 x 19 km landing ellipses should not contain features that could endanger the landing, the deployment of the surface platform ramps for the rover to exit, and the subsequent driving of the rover. This means scrutinizing the region for steep slopes, loose material and large rocks.

- On the science side, the analysis had to identify sites where the rover could use its drill to retrieve samples from below the surface, and to define possible traverses it could make up to 5 km from its touchdown point in order to reach the maximum number of interesting locations.

ExoMars2022_Auto9

Figure 60: The two candidates for the landing site of the ESA-Roscosmos rover and surface science platform. The study area of each landing site is indicated by the black outline; the shape corresponds to the different landing ellipses defined by factors such as different launch dates within the launch window and, in the case of Mawrth Vallis, local topography constraints resulting in different landing ellipse centers depending on the launch date. The map is color-coded corresponding to elevation: whites and reds are higher than yellows and greens. The data was obtained by the Mars Orbiter Laser Altimeter onboard NASA’s Mars Global Surveyor (image credit: NASA/JPL)

Legend to Figure 60: Both landing site candidates lie close to the transition between the cratered northern highlands and the southern lowlands of Mars. They lie just north of the equator, in a region with many channels cutting through from the southern highlands to the northern lowlands. As such, they preserve a rich record of geological history from the planet’s wetter past, billions of years ago.

• September 27, 2018: Thales Alenia Space in the UK achieves the major milestone of delivering its IMU Flight Models to Airbus Defence and Space in UK for integration with the ExoMars Rover. Exomars is a project under international cooperation between ESA (European Space Agency) and Roscosmos (Russian Space Agency), Thales Alenia Space is the prime contractor for the global program. 44)

- The IMU (Inertial Measurement Unit) designed by Thales Alenia Space in the UK has been delivered for integration in to the ExoMars Rover mission. The IMU enables the Rover’s navigation during its mission, providing critical data on its orientation, speed and direction.

- Designed, built and tested in Thales Alenia Space’s advanced facilities in Bristol, UK, these next generation IMU’s utilize a new modular concept that provides 3 axis orientation, angular rate, velocity and acceleration measurement.

• June 27, 2018: A ground penetrating radar antenna for ESA’s ExoMars 2020 rover being pre-cleaned in an ultra-cleanroom environment in preparation for its sterilization process, in an effort to prevent terrestrial microbes coming along for the ride to the red planet. 45)

- Part of the Agency’s Life, Physical Sciences and Life Support Laboratory based in its Netherlands technical center, This 35 m2 ‘ISO Class 1’ cleanroom is one of the cleanest places in Europe. It is equipped with a dry heat sterilizer used to reduce the microbial ‘bioburden’ on equipment destined for alien worlds.

ExoMars2022_Auto8

Figure 61: The item seen here is the WISDOM (Water Ice Subsurface Deposit Observation on Mars) radar antenna flight model, designed to sound the subsurface of Mars for water ice (image credit: ESA–A. Dowson)

- “After pre-cleaning and then the taking of sample swabs, the antenna was placed into our dry heat sterilizer, to target the required 99.9% bioburden reduction to meet ExoMars 2020’s cleanliness requirements,” explains technician Alan Dowson.

- To check the effectiveness of this process, the swabs are subjected to a comparable heat shock and then cultivated for 72 hours, to analyze the number of spores and bacteria able to survive. The viable bioburden is then calculated for the surface area of the WISDOM antenna. If this level is below the mission’s maximum then it is cleared for delivery.”

- All the cleanroom’s air passes through a two-stage filter system. Anyone entering the chamber has to gown up in a much more rigorous way than a hospital surgeon, before passing through an air shower to remove any remaining contaminants.

- The chamber’s cleanliness is such that it contains less than 10 particles smaller than a thousandth of a millimeter per cubic meter. A comparable sample of the outside air could well contain millions.

- By international planetary protection agreement, space agencies are legally required to prevent terrestrial microbes hitchhiking to other planets and moons in our Solar System where past or present alien life is a possibility.

• May 29, 2018: A representative model of the ExoMars rover that will land on Mars in 2021 is beginning a demanding test campaign that will ensure it can survive the rigors of launch and landing, as well as operations under the environmental conditions of Mars. 46)

- The ExoMars rover will be the first of its kind to drill below the surface – down to 2 m – and determine if evidence of life is buried underground, protected from the destructive radiation that impinges the surface today.

- Like any space mission, the rover’s mechanical structure, along with its electrical and thermal components and its interfaces with the scientific instruments, have to be tested to check they can survive their journey in space and operations at the destination.

- As such the rover ‘structural and thermal model’ was recently transferred from Airbus Defence and Space in Stevenage, UK, to the Airbus site in Toulouse, France. This week, the model will be shaken on a vibration table to ensure it can survive the intense juddering as the Proton rocket carries it into space.

- Furthermore, the rover model will be subjected to the shocks associated with entering another planet’s atmosphere at high speed and as parachutes open, and finally the touchdown onto the Red Planet’s surface.

- Two months of thermal tests will follow under Mars atmosphere conditions, to qualify the rover for being able to withstand the frigid temperatures and large daily temperature variations on Mars.

- The tests will be conducted in a chamber to simulate the low atmospheric pressure of Mars – less than 1% of Earth’s average sea level pressure – and its carbon dioxide-rich atmosphere. The rover will also need to operate at temperatures down to –120ºC. A closed compartment inside the rover, where martian soil samples will be analyzed, will be thermally controlled to maintain temperatures between +20ºC and –40ºC.

- The current test campaign is expected to last until the beginning of August 2018. The rover model will then move to Lavochkin, Moscow, where it will be sealed inside a replica descent module and again subjected to vibration, shock and thermal tests.

- Another test model will soon start an eight month-long campaign focusing on the rover’s movements and navigation over a variety of different ground types, ranging from fine-grained soil to larger boulders.

- The mission will travel to Mars inside an aeroshell, with the rover mounted on a surface science platform. Once safely delivered to the Red Planet’s surface, the landing platform will deploy its solar panels and ramps, and within a few days the rover will drive off the platform and begin its exciting exploration of Mars.

- “This campaign kicks off a series of tests that will verify the mechanical and thermal design of the ExoMars rover, essential preparation that brings us a step closer to roving on the Red Planet,” says Pietro Baglioni, ESA ExoMars rover team leader.

ExoMars2022_Auto7

Figure 62: Photo of the ExoMars rover structural model (image credit: ESA)