Minimize Hubble Space Telescope

HST (Hubble Space Telescope) Mission

Background   Sensor Complement   HST Imagery    Hubble Servicing Missions    Ground Segment    References

The HST (Hubble Space Telescope) of NASA is named in honor of the American astronomer Edwin Hubble (1889-1953), Dr. Hubble confirmed an "expanding" universe, which provided the foundation for the big-bang theory. Hubble, the observatory, is the first major optical telescope to be placed in space, the ultimate mountaintop. Above the distortion of the atmosphere, far far above rain clouds and light pollution, Hubble has an unobstructed view of the universe. Scientists have used Hubble to observe the most distant stars and galaxies as well as the planets in our solar system. 1)

The planning for HST started in the early 1970s. The HST was launched into LEO (Low Earth Orbit) on April 24, 1990 on STS-31 (12:33:51 UTC, on Shuttle Discovery). Hubble is operational as of 2018, in its 29th year on orbit, and is one of NASA's Great Observatories. Hubble's launch and deployment in April 1990 marked the most significant advance in astronomy since Galileo's telescope. Thanks to five servicing missions and more than 25 years of operation, our view of the universe and our place within it has never been the same.

Mission:

• Deployment of Hubble: April 25, 1990

• First Image: May 20, 1990: Star cluster NGC 3532

• Servicing Mission 1 (STS-61): December 1993

• Servicing Mission 2 (STS-82): February 1997

• Servicing Mission 3A (STS-103): December 1999

• Servicing Mission 3B (STS-109): February 2002

• Servicing Mission 4 (STS-125): May 2009

Spacecraft: The spacecraft has a length of 13.2 m, a mass at launch of 10,886 kg, post SM (Servicing Mission) 4 of 12,247 kg, and a maximum diameter of 4.2 m.

Orbit: LEO with an altitude of 547 km, an inclination of 28.5º, and a period of 95 minutes.

The HST (Hubble Space Telescope) of NASA features a ULE TM(Ultra-Low Expansion) primary mirror of 2.4 m diameter (f/24 Ritchey-Chretien) and a 0.3 m Zerodur secondary mirror. The HST primary mirror was a lightweighted monolithic design (824 kg) by Perkin-Elmer (now Goodrich Inc.), Danbury, CN, using a lightweight, thick egg crate core sandwiched between two plates and fused together.

The HST is the most precisely pointed instrument in spaceborne astronomy. The pointing requirements call for a continuous 24 hour target lock maintenance of 0.007 arcseconds (2 millionth degree).

Hubble_Auto5E

Figure 1: IMAX Cargo Bay Camera view of the Hubble Space Telescope at the moment of release, mission STS-31 in April 1990 (image credit: NASA)

Some background:

The telescope's original equipment package included the Wide Field/Planetary Camera (WF/PC), Goddard High Resolution Spectograph (GHRS), Faint Object Camera (FOC), Faint Object Spectograph (FOS), and High Speed Photometer (HSP). 2) 3)

After a few weeks of operation, scientists noticed that images being sent back from Hubble were slightly blurred. While this distortion still allowed scientists to study the cosmos and make significant discoveries, it resulted in less spectacular images, and some of the original mission could not be fulfilled. An investigation finally revealed a spherical aberration in the primary mirror, due to a miscalibrated measuring instrument that caused the edges of the mirror to be ground slightly too flat. Engineers rushed to come up with a fix to the problem in time for Hubble's first scheduled servicing mission in 1993. The system designed to correct the error was designated COSTAR (Corrective Optics Space Telescope Axial Replacement). COSTAR was a set of optics that compensated for the aberration and would allow all of Hubble's instruments to function normally.

In December, 1993, the crew of STS-61 embarked on a service mission to replace a number of Hubble's parts. Following intensive training on the use of new tools never used before in space, two teams of astronauts completed repairs during a record five back-to-back spacewalks. During the EVAs, COSTAR was installed and the Wide Field/Planetary Camera was replaced with the Wide Field/Planetary Camera 2, which was designed to compensate for the mirror problem. The team also performed basic maintenance on the craft, installed new solar arrays, and replaced four of Hubble's gyroscopes.

Shortly after the crew returned to Earth and the Hubble Space Telescope began returning sharp and spectacular images, NASA deemed the servicing mission a success. Astronomers could now take advantage of a fully functional space telescope, and the public was treated to breathtaking photos of stars, galaxies, nebulae, and other deep-space objects. Subsequent servicing missions improved Hubble's capabilities and performed routine repairs.

In February, 1997, the crew of STS-82 installed the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) and the Space Telescope Imaging Spectograph (STIS) to detect infrared light from deep-space objects and take detailed photos of celestial objects. Servicing mission 3A in December, 1999 replaced all six of the telescope's aging gyroscopes, which accurately point the telescope at its target. STS-103 astronauts also replaced one of the telescope's three fine guidance sensors and installed a new computer, all in time to redeploy Hubble into orbit on Christmas Day. The most recent servicing mission to the spacecraft, servicing mission 3B, came aboard STS-109 in March, 2002. Columbia crewmembers installed the new Advanced Camera for Surveys (ACS), which had sharper vision, a wider field of view, and quicker data gathering than the Wide Field/Planetary Camera 2. Astronauts also replaced Hubble's solar panels with a more efficient array and conducted repairs on the NICMOS.

Hubble_Auto5D

Figure 2: This photograph of NASA's Hubble Space Telescope was taken on the fifth servicing mission to the observatory in May 2009 (image credit: NASA)

Hubble_Auto5C

Figure 3: Artist's view of the HST in space along with the designation of the key element locations (image credit: NASA)

The Hubble Space Telescope is an international collaboration among NASA and ESA (European Space Agency). NASA has overall responsibility for the Hubble mission and operations. ESA provided the original FOC (Faint Object Camera) and solar panels, and provides science operations support.

Hubble_Auto5B

Figure 4: Photo of the Hubble mission operations team at NASA's Goddard Space Flight Center in Greenbelt, Maryland, as of Hubble's 25th anniversary of flight in April 2015. Since Hubble's official start in 1977, thousand of people from the United States and Europe have supported the mission through building and testing hardware and software, operating the vehicle, and performing science operations. More than 30 astronauts have flown to Hubble to deploy, upgrade and repair the observatory with the support of a human spaceflight and space shuttle staff. Thousands of astronomers from dozens of countries have used Hubble and analyzed its data to produce more than 15,000 peer reviewed papers to date (image credit: NASA/GSFC, Bill Hrybyk) 4)

 

Note: At this stage of the mission (2018), no attempt is being made to recover all facets of Hubble regarding the spacecraft, instrumentation and the past history (it would have required a constant accompaniment of the mission with all updates over its lifetime). Instead, some fairly recent images of the mission and the operational status of the mission are presented.

The Hubble Servicing Missions are shortly described in a separate chapter of this file.

 


 

HST sensor complement: (ACS, WFC3, STIS, COS, FGS, NICMOS)

The Hubble Space Telescope has three types of instruments that analyze light from the universe: cameras, spectrographs and interferometers. 5)

Hubble_Auto5A

Figure 5: Hubble's scientific instruments analyze different types of light ranging from ultraviolet (UV) to infrared (IR). This graphic shows which wavelengths each instrument studies (image credit: NASA)

 

Cameras:

Hubble has two primary camera systems to capture images of the cosmos. Called the Advanced Camera for Surveys (ACS) and the Wide Field Camera 3 (WFC3), these two systems work together to provide superb wide-field imaging over a broad range of wavelengths.

ACS (Advanced Camera for Surveys)

Installed on Hubble in 2002, ACS was designed primarily for wide-field imagery in visible wavelengths, although it can also detect ultraviolet and near-infrared light. ACS has three cameras, called channels, that capture different types of images. An electronics failure in January 2007 rendered the two most-used science channels inoperable. In 2009, astronauts were able to repair one of the channels and restored ACS's capacity to capture high-resolution, wide-field views.

WFC3 (Wide Field Camera 3)

Installed in 2009, WFC3 provides wide-field imagery in ultraviolet, visible and infrared light. WFC3 was designed to complement ACS and expand the imaging capabilities of Hubble in general. While ACS is primarily used for visible-light imaging, WFC3 probes deeper into infrared and ultraviolet wavelengths, providing a more complete view of the cosmos.

Hubble_Auto59

Figure 6: Astronaut Andrew Feustel prepares to install WFC3 (Wide Field Camera 3) on Hubble during Servicing Mission 4 in 2009 (image credit: NASA)

 

Spectrographs

Spectrographs practice spectroscopy, the science of breaking light down to its component parts, similar to how a prism splits white light into a rainbow. Any object that absorbs or emits light can be studied with a spectrograph to determine characteristics such as temperature, density, chemical composition and velocity.

Hubble currently utilizes two spectrographs: COS (Cosmic Origins Spectrograph) and the STIS (Space Telescope Imaging Spectrograph). COS and STIS are complementary instruments that provide scientists with detailed spectral data for a variety of celestial objects. While STIS is a versatile, "all purpose" spectrograph that handles bright objects well, COS measures exceedingly faint levels of ultraviolet light emanating from distant cosmic sources, such as quasars in remote galaxies. Working together, the two spectrographs provide a full set of spectroscopic tools for astrophysical research.

Hubble_Auto58

Figure 7: Hubble's STIS captured a spectrum (right) of material ejected by a pair of massive stars called Eta Carinae, while the Wide Field and Planetary Camera 2 took an image of the billowing clouds of gas enveloping the stellar pair (left). The spectrum reveals that one of the lobes contains the elements helium (He), argon (Ar), iron (Fe) and nickel (Ni), image credit: NASA, ESA and the Hubble SM4 ERO Team

 

Interferometers

Hubble's interferometers serve a dual purpose — they help the telescope maintain a steady aim and also serve as a scientific instrument. The three interferometers aboard Hubble are called the FGS (Fine Guidance Sensors). The Fine Guidance Sensors measure the relative positions and brightnesses of stars.

When Hubble is pointing at a target, two of the three Fine Guidance Sensors are used to lock the telescope onto the target. For certain observations, the third Fine Guidance Sensor can be used to gather scientific information about a target, such as a celestial object's angular diameter or star positions that are ten times more accurate than those obtained by ground-based telescopes.

The Fine Guidance Sensors are very sensitive instruments. They seek out stable point sources of light (known as "guide stars") and then lock onto them to keep the telescope pointing steadily. When a light in the sky is not a point source, the Fine Guidance Sensor cannot lock on and so it rejects the guide star. Often, a rejected guide star is actually a faraway galaxy or a double-star system. Since Hubble was launched in 1990, the Fine Guidance Sensors have detected hundreds of double-star systems that were previously thought to be single stars.

 

Past Instruments

Only one of the instruments remaining on Hubble — the third Fine Guidance Sensor — was launched with the observatory in 1990. The rest of the instruments were installed during Hubble's five servicing missions. In addition to installing new instruments, astronauts also repaired two instruments (ACS and STIS) while visiting Hubble on Servicing Mission 4 in 2009. The NICMOS (Near-Infrared Camera and Multi-Object Spectrometer) on Hubble is in hibernation following a cryocooler anomaly, but most of its infrared duties have since been taken over by WFC3.

Hubble's past instruments include:

• High Speed Photometer

• Faint Object Camera

• Faint Object Spectrograph

• Goddard High Resolution Spectrograph

• Wide Field and Planetary Camera

• Wide Field and Planetary Camera 2

• Fine Guidance Sensors (three).

 

Current Instruments

ACS (Advanced Camera for Surveys) - ACS is a third-generation imaging camera. This camera is optimized to perform surveys or broad imaging campaigns. ACS replaced Hubble's Faint Object Camera (FOC) during Servicing Mission 3B. Its wavelength range extends from the ultraviolet, through the visible and out to the near-infrared (115-1050 nm). ACS has increased Hubble's potential for new discoveries by a factor of ten.

COS (Cosmic Origins Spectrograph) - COS focuses exclusively on ultraviolet (UV) light and is the most sensitive ultraviolet spectrograph ever, increasing the sensitivity at least 10 times in the UV spectrum and up to 70 times when looking at extremely faint objects. It is best at observing points of light, like stars and quasars. COS was installed during during Servicing Mission 4 in May 2009.

STIS (Space Telescope Imaging Spectrograph) - STIS is a second-generation imager/spectrograph. STIS is used to obtain high resolution spectra of resolved objects. STIS has the special ability to simultaneously obtain spectra from many different points along a target. The STIS instrument has a mass of 318 kg and a wavelength range of 115-1000 nm.

STIS spreads out the light gathered by a telescope so that it can be analyzed to determine such properties of celestial objects as chemical composition and abundances, temperature, radial velocity, rotational velocity, and magnetic fields. Its spectrograph can be switched between two different modes of usage:

1) So-called "long slit spectroscopy" where spectra of many different points across an object are obtained simultaneously.

2) So-called "echelle spectroscopy" where the spectrum of one object is spread over the detector giving better wavelength resolution in a single exposure.

STIS also has a so-called coronagraph which can block light from bright objects, and in this way enables investigations of nearby fainter objects.

WFC3 (Wide Field Camera 3) - Wide Field Camera 3 is the main imager on the telescope. It has a camera that records visible and ultraviolet (UVIS, 200-1000 nm) wavelengths of light and is 35 times more sensitive in the UV wavelengths than its predecessor. A second camera that is built to view infrared (NIR, 850-1700 nm) light increases Hubble's IR resolution from 65,000 to 1 million pixels. Its combination of field-of-view, sensitivity, and low detector noise results in a 15-20 time improvement over Hubble's previous IR camera. WFC3 was jointly developed at GSFC, STSI (Space Telescope Science Institute) in Baltimore and Ball Aerospace & Technologies Corporation in Boulder, CO. 6)

FGS (Fine Guidance Sensor) – The FGS provides pointing information for the spacecraft by locking onto guide stars. The FGS can also function as a scientific instrument by precisely measuring the relative positions of stars, detecting rapid changes in a star's brightness, and resolving double-star systems that appear as point sources even to Hubble's cameras. Hubble has three FGSs onboard the observatory.

NICMOS (Near Infrared Camera and Multi-Object Spectrometer) – NICMOS has the ability to obtain images and spectroscopic observations of astronomical targets at near-infrared wavelengths. Although NICMOS is currently inactive, most of its functionality is replaced by Hubble's other science instruments.

 


 

HST (Hubble Space Telescope) - Status and some observation imagery

• 07 March 2019: In a striking example of multi-mission astronomy, measurements from the NASA/ESA Hubble Space Telescope and the ESA Gaia mission have been combined to improve the estimate of the mass of our home galaxy the Milky Way: 1.5 trillion (1.5 x 1012) solar masses. 7) 8)

Hubble_Auto57

Figure 8: This artist's impression shows a computer generated model of the Milky Way and the accurate positions of the globular clusters used in this study surrounding it. Scientists used the measured velocities of these 44 globular clusters to determine the total mass of the Milky Way, our cosmic home. Satellite: Hubble Space Telescope (image credit: ESA/Hubble, NASA, L. Calçada)

- The mass of the Milky Way is one of the most fundamental measurements astronomers can make about our galactic home. However, despite decades of intense effort, even the best available estimates of the Milky Way's mass disagree wildly. Now, by combining new data from the European Space Agency (ESA) Gaia mission with observations made with the NASA/ESA Hubble Space Telescope, astronomers have found that the Milky Way weighs in at about 1.5 trillion solar masses within a radius of 129,000 light-years from the galactic center.

- Previous estimates of the mass of the Milky way ranged from 500 billion (500 x 109) to 3 trillion (3 x 1012) times the mass of the Sun. This huge uncertainty arose primarily from the different methods used for measuring the distribution of dark matter – which makes up about 90% of the mass of the galaxy.

- "We just can't detect dark matter directly," explains Laura Watkins (European Southern Observatory, Germany), who led the team performing the analysis. "That's what leads to the present uncertainty in the Milky Way's mass – you can't measure accurately what you can't see!"

- Given the elusive nature of the dark matter, the team had to use a clever method to weigh the Milky Way, which relied on measuring the velocities of globular clusters – dense star clusters that orbit the spiral disc of the galaxy at great distances.
Note: Globular clusters formed prior to the construction of the Milky Way's spiral disk, where our Sun and the Solar System later formed. Because of their great distances, globular star clusters allow astronomers to trace the mass of the vast envelope of dark matter surrounding our galaxy far beyond the spiral disk.

- "The more massive a galaxy, the faster its clusters move under the pull of its gravity" explains N. Wyn Evans (University of Cambridge, UK). "Most previous measurements have found the speed at which a cluster is approaching or receding from Earth, that is the velocity along our line of sight. However, we were able to also measure the sideways motion of the clusters, from which the total velocity, and consequently the galactic mass, can be calculated."
Note: The total velocity of an object is made up of three motions – a radial motion plus two defining the sideway motions. However, in astronomy most often only line-of-sight velocities are available. With only one component of the velocity available, the estimated masses depend very strongly on the assumptions for the sideway motions. Therefore measuring the sideway motions directly significantly reduces the size of the error bars for the mass.

- The group used Gaia's second data release as a basis for their study. Gaia was designed to create a precise three-dimensional map of astronomical objects throughout the Milky Way and to track their motions. Its second data release includes measurements of globular clusters as far as 65,000 light-years from Earth.

- "Global clusters extend out to a great distance, so they are considered the best tracers astronomers use to measure the mass of our galaxy" said Tony Sohn of STSI (Space Telescope Science Institute), Baltimore, MD, USA, who led the Hubble measurements.

- The team combined these data with Hubble's unparalleled sensitivity and observational legacy. Observations from Hubble allowed faint and distant globular clusters, as far as 130,000 light-years from Earth, to be added to the study. As Hubble has been observing some of these objects for a decade, it was possible to accurately track the velocities of these clusters as well.

- "We were lucky to have such a great combination of data," explained Roeland P. van der Marel of STSI. "By combining Gaia's measurements of 34 globular clusters with measurements of 12 more distant clusters from Hubble, we could pin down the Milky Way's mass in a way that would be impossible without these two space telescopes."

- Until now, not knowing the precise mass of the Milky Way has presented a problem for attempts to answer a lot of cosmological questions. The dark matter content of a galaxy and its distribution are intrinsically linked to the formation and growth of structures in the Universe. Accurately determining the mass for the Milky Way gives us a clearer understanding of where our galaxy sits in a cosmological context. 9)

Figure 9: Hubblecast 117 Light: Hubble & Gaia weigh the Milky Way. Measurements from the NASA/ESA Hubble Space Telescope and the ESA Gaia mission have been combined to improve the estimate of the mass of our home galaxy the Milky Way: 1.5 trillion solar masses (video credit: Hubble ESA, NASA)

• 06 March 2019: NASA has recovered the Hubble Space Telescope's ACS (Advanced Camera for Surveys) instrument, which suspended operations on Thursday, Feb. 28, 2019. The final tests were conducted and the instrument was brought back to its operational mode on March 6. 10)

- At 8:31 p.m. EST on 28 February, the ACS aboard NASA's Hubble Space Telescope suspended operations after an error was detected as the instrument was performing a routine boot procedure. The error indicated that software inside the camera had not loaded correctly in a small section of computer memory. The Hubble operations team ran repeated tests to reload the memory and check the entire process. No errors have been detected since the initial incident, and it appears that all circuits, computer memory and processors that are part of that boot process are now operating normally. The instrument has now been brought back to its standard operating mode for normal operations.

- The ACS was installed in 2002 and repaired during the last servicing mission to Hubble back in 2009 after a power supply failure. More than 5,500 peer-reviewed scientific papers have been published from its data, and it is credited with some of Hubble's most iconic images, including the Hubble Ultra Deep Field, the furthest look into the universe at that time.

- Hubble itself is in its 29th year of operations, well surpassing its original 15-year lifetime. With its primary and backup systems, it is expected that Hubble will operate simultaneously with the upcoming JWST (James Webb Space Telescope) to obtain multiwavelength observations of astronomical objects. Scheduled to launch in 2021, the JWST is designed to see near- and mid-infrared light while Hubble is optimized for ultraviolet and visible light.

• 01 March 2019: At 8:31 p.m. EST on 28 February 2019, the Advanced Camera for Surveys (ACS) aboard NASA's Hubble Space Telescope suspended operations after an error was detected as the instrument was performing a routine boot procedure. The error indicated that software inside the camera had not loaded correctly. A team of instrument system engineers, flight software experts, and flight operations personnel quickly organized to download and analyze instrument diagnostic information. This team is currently working to identify the root cause and then to construct a recovery plan. 11)

- The telescope continues to operate normally, executing observations with the other three science instruments — the Wide Field Camera 3 (WFC3), the Cosmic Origins Spectrograph (COS), and the Space Telescope Imaging Spectrograph (STIS) — that are all performing nominally. There are no critical observations using the ACS scheduled for the remainder of this week or next week, and the observations that were planned over the next two weeks can be easily rescheduled.

- Originally required to last 15 years, Hubble has now been operating for more than 28 years. The final servicing mission in 2009, expected to extend Hubble's lifetime an additional five years, has now produced more than nine years of science observations. During that servicing mission, astronauts repaired the ACS, installed in 2002, after its power supply failed in 2007.

• 01 March 2019: Globular clusters like NGC 2419, visible in this image taken with the NASA/ESA Hubble Space Telescope, are not only beautiful, but also fascinating. They are spherical groups of stars which orbit the center of a galaxy; in the case of NGC 2419, that galaxy is the Milky Way. NGC 2419 can be found around 300,000 light-years from the Solar System, in the constellation Lynx (the Lynx). 12)

- The stars populating globular clusters are very similar to one another, with similar properties such as metallicity. The similarity of these stellar doppelgängers is due to their formation early in the history of the galaxy. As the stars in a globular cluster all formed at around the same time, they tend to display reasonably homogeneous properties. It was believed that this similarity also extended to the stellar helium content; that is, it was thought that all stars in a globular cluster would contain comparable amounts of helium.

- However, Hubble's observations of NGC 2419 have shown that this is not always the case. This surprising globular cluster turns out to be made up of two separate populations of red giant stars, one of which is unusually helium-rich. Other elements within the different stars in NGC 2419 vary too — nitrogen in particular. On top of this, these helium-rich stars were found to be predominantly in the center of the globular cluster, and to be rotating. These observations have raised questions about the formation of globular clusters; did these two drastically different groups of stars form together? Or did this globular cluster come into being by a different route entirely?

Hubble_Auto56

Figure 10: The two mysterious populations of NGC 2419 (image credit: ESA/Hubble & NASA, S. Larsen et al.; CC BY 4.0)

• 20 February 2019: Astronomers call it "the moon that shouldn't be there." — After several years of analysis, a team of planetary scientists using NASA's Hubble Space Telescope has at last come up with an explanation for a mysterious moon around Neptune that they discovered with Hubble in 2013. 13) 14)

- The tiny moon, named Hippocamp, is unusually close to a much larger Neptunian moon called Proteus. Normally, a moon like Proteus should have gravitationally swept aside or swallowed the smaller moon while clearing out its orbital path.

- So why does the tiny moon exist? Hippocamp is likely a chipped-off piece of the larger moon that resulted from a collision with a comet billions of years ago. The diminutive moon, only 20 miles (about 34 km) across, is 1/1000th the mass of Proteus (which is 260 miles, ~418 km across).

- "The first thing we realized was that you wouldn't expect to find such a tiny moon right next to Neptune's biggest inner moon," said Mark Showalter of the SETI Institute in Mountain View, California. "In the distant past, given the slow migration outward of the larger moon, Proteus was once where Hippocamp is now."

- This scenario is supported by Voyager 2 images from 1989 that show a large impact crater on Proteus, almost large enough to have shattered the moon. "In 1989, we thought the crater was the end of the story," said Showalter. "With Hubble, now we know that a little piece of Proteus got left behind and we see it today as Hippocamp." The orbits of the two moons are now 7,500 miles (about 12,070 km) apart.

- Neptune's satellite system has a violent and tortured history. Many billions of years ago, Neptune captured the large moon Triton from the Kuiper Belt, a large region of icy and rocky objects beyond the orbit of Neptune. Triton's gravity would have torn up Neptune's original satellite system. Triton settled into a circular orbit and the debris from shattered Neptunian moons re-coalesced into a second generation of natural satellites. However, comet bombardment continued to tear things up, leading to the birth of Hippocamp, which might be considered a third-generation satellite.

- "Based on estimates of comet populations, we know that other moons in the outer solar system have been hit by comets, smashed apart, and re-accreted multiple times," noted Jack Lissauer of NASA's Ames Research Center in California's Silicon Valley, a coauthor on the new research. "This pair of satellites provides a dramatic illustration that moons are sometimes broken apart by comets."

Hubble_Auto55

Figure 11: Artist's concept of Neptune's Moon Hippocamp [image credit: NASA, ESA, and J. Olmsted (STScI)]

- Hippocamp is a half-horse half-fish from Greek mythology. The scientific name for the seahorse is Hippocampus, also the name of an important part of the human brain. The rules of the International Astronomical Union require that the moons of Neptune are named after Greek and Roman mythology of the undersea world.

- The team of astronomers in this study consists of M. Showalter (SETI Institute, Mountain View, California), I. de Pater (University of California, Berkeley, California), J. Lissauer (NASA Ames Research Center, Silicon Valley, California), and R. French (SETI Institute, Mountain View, California).

- The paper will appear in the February 21 issue of the science journal Nature. 15)

- The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.

Hubble_Auto54

Figure 12: Neptune's inner Moons and their diameters. This diagram shows the orbital positions of Neptune's inner moons, which range in size from 20 to 260 miles across. The outer moon Triton was captured from the Kuiper belt many billions of years ago. This would have torn up Neptune's original satellite system. Triton settled into a circular orbit and the debris from shattered moons re-coalesced into a second generation of inner satellites seen today. However, comet bombardment continued to tear things up, leading to the birth of Hippocamp, which is a broken-off piece of Proteus. Therefore, it is a third-generation satellite. Not shown is Neptune's outermost known satellite, Nereid, which is in a highly eccentric orbit, and may be a survivor from the era of that Triton capture [image credit: NASA, ESA, and A. Feild (STScI)]

• 15 February 2019: Stars are born in dark clouds of gas and dust like this. But star formation is an energetic process, and newly-formed stars can send out a brilliant display of lights called Herbig-Haro objects. These objects form as jets of hot gas spewed by the newborn star collide with the surrounding matter at high speeds. 16)

Hubble_Auto53

Figure 13: In this image, the NASA/ESA Hubble Space Telescope has captured the smoking gun of a newborn star, the Herbig–Haro objects numbered 7 to 11 (HH 7–11). These five objects, visible in blue in the top center of the image, lie within NGC 1333, a reflection nebula full of gas and dust found about a thousand light-years away from Earth (image credit: ESA/Hubble & NASA, K. Stapelfeldt)

- Bright patches of nebulosity near newborn stars, Herbig-Haro objects like HH 7–11 are transient phenomena. Traveling away from the star that created them at a speed of up to about 150,000 miles per hour, they disappear into nothingness within a few tens of thousands of years. The young star that is the source of HH 7–11 is called SVS 13, and all five objects are moving away from SVS 13 toward the upper left. The current distance between HH 7 and SVS 13 is about 20,000 times the distance between Earth and the Sun.

- Herbig–Haro objects are formed when jets of ionized gas ejected by a young star collide with nearby clouds of gas and dust at high speeds. The Herbig-Haro objects visible in this image are no exception to this and were formed when the jets from the newborn star SVS 13 collided with the surrounding clouds. These collisions created the five brilliant clumps of light within the reflection nebula.

• 11 February 2019: Like Earth, Uranus and Neptune have seasons, which likely drive some of the features in their atmospheres. But their seasons are much longer than on Earth, spanning decades rather than months. 17) 18)

- The new Hubble view of Neptune shows the dark storm, seen at top center (Figure 14). Appearing during the planet's southern summer, the feature is the fourth and latest mysterious dark vortex captured by Hubble since 1993. Two other dark storms were discovered by the Voyager 2 spacecraft in 1989 as it flew by the remote planet. Since then, only Hubble has had the sensitivity in blue light to track these elusive features, which have appeared and faded quickly. A study led by University of California, Berkeley, undergraduate student Andrew Hsu estimated that the dark spots appear every four to six years at different latitudes and disappear after about two years.

- Hubble uncovered the latest storm in September 2018 in Neptune's northern hemisphere. The feature is roughly 6,800 miles across. To the right of the dark feature are bright white "companion clouds." Hubble has observed similar clouds accompanying previous vortices. The bright clouds form when the flow of ambient air is perturbed and diverted upward over the dark vortex, causing gases to freeze into methane ice crystals. These clouds are similar to clouds that appear as pancake-shaped features when air is pushed over mountains on Earth (though Neptune has no solid surface). The long, thin cloud to the left of the dark spot is a transient feature that is not part of the storm system.

- It's unclear how these storms form. But like Jupiter's Great Red Spot, the dark vortices swirl in an anti-cyclonic direction and seem to dredge up material from deeper levels in the ice giant's atmosphere.

- The Hubble observations show that as early as 2016, increased cloud activity in the region preceded the vortex's appearance. The images indicate that the vortices probably develop deeper in Neptune's atmosphere, becoming visible only when the top of the storm reaches higher altitudes.

- The snapshot of Uranus, like the image of Neptune, reveals a dominant feature: a vast bright stormy cloud cap across the north pole.

- Scientists believe this new feature is a result of Uranus' unique rotation. Unlike every other planet in the solar system, Uranus is tipped over almost onto its side. Because of this extreme tilt, during the planet's summer the Sun shines almost directly onto the north pole and never sets. Uranus is now approaching the middle of its summer season, and the polar-cap region is becoming more prominent. This polar hood may have formed by seasonal changes in atmospheric flow.

Hubble_Auto52

Figure 14: During its routine yearly monitoring of the weather on our solar system's outer planets, NASA's Hubble Space Telescope has uncovered a new mysterious dark storm on Neptune (right, image taken with WFC3 in September and November 2018) and provided a fresh look at a long-lived storm circling around the north polar region on Uranus (left). The Uranus image was taken with the WFC3 of Hubble in November 2018. [image credit: NASA, ESA, A. Simon (NASA Goddard Space Flight Center), and M. H. Wong and A. Hsu (University of California, Berkeley)]

- Near the edge of the polar storm is a large, compact methane-ice cloud, which is sometimes bright enough to be photographed by amateur astronomers. A narrow cloud band encircles the planet north of the equator. It is a mystery how bands like these are confined to such narrow widths, because Uranus and Neptune have very broad westward-blowing wind jets.

- Both planets are classified as ice giant planets. They have no solid surface but rather mantles of hydrogen and helium surrounding a water-rich interior, itself perhaps wrapped around a rocky core. Atmospheric methane absorbs red light but allows blue-green light to be scattered back into space, giving each planet a cyan hue.

- The new Neptune and Uranus images are from the Outer Planet Atmospheres Legacy (OPAL) program, a long-term Hubble project, led by Amy Simon of NASA's Goddard Space Flight Center in Greenbelt, Maryland, that annually captures global maps of our solar system's outer planets when they are closest to Earth in their orbits. OPAL's key goals are to study long-term seasonal changes, as well as capture comparatively transitory events, such as the appearance of Neptune's dark spot. These dark storms may be so fleeting that in the past some of them may have appeared and faded during multi-year gaps in Hubble's observations of Neptune. The OPAL program ensures that astronomers won't miss another one.

- These images are part of a scrapbook of Hubble snapshots of Neptune and Uranus that track the weather patterns over time on these distant, cold planets. Just as meteorologists cannot predict the weather on Earth by studying a few snapshots, astronomers cannot track atmospheric trends on solar system planets without regularly repeated observations. Astronomers hope that Hubble's long-term monitoring of the outer planets will help them unravel the mysteries that still persist about these faraway worlds.

- Analyzing the weather on these worlds also will help scientists better understand the diversity and similarities of the atmospheres of solar-system planets, including Earth.

• 04 February 2019: This atmospheric image shows a galaxy named Messier 85, captured in all its delicate, hazy glory by the NASA/ESA Hubble Space Telescope. Messier 85 slants through the constellation of Coma Berenices (Berenice's Hair), and lies around 50 million light-years from Earth. It was first discovered by Charles Messier's colleague Pierre Méchain in 1781, and is included in the Messier catalogue of celestial objects. 19)

- Messier 85 is intriguing — its properties lie somewhere between those of a lenticular and an elliptical galaxy, and it appears to be interacting with two of its neighbors: the beautiful spiral NGC 4394, located out of frame to the upper left, and the small elliptical MCG 3-32-38, located out of frame to the center bottom.

- The galaxy contains some 400 billion stars, most of which are very old. However, the central region hosts a population of relatively young stars of just a few billion years in age; these stars are thought to have formed in a late burst of star formation, likely triggered as Messier 85 merged with another galaxy over four billion years ago. Messier 85 has a further potentially strange quality. Almost every galaxy is thought to have a supermassive black hole at its center, but from measurements of the velocities of stars in this galaxy, it is unclear whether Messier 85 contains such a black hole.

Hubble_Auto51

Figure 15: This image combines infrared, visible and ultraviolet observations from Hubble's Wide Field Camera 3 (image credit: ESA/Hubble & NASA, R. O'Connell)

• 31 January 2019: An international team of astronomers recently used the NASA/ESA Hubble Space Telescope to study white dwarf stars within the globular cluster NGC 6752. The aim of their observations was to use these stars to measure the age of the globular cluster, but in the process they made an unexpected discovery. 20)

- In the outer fringes of the area observed with Hubble's Advanced Camera for Surveys a compact collection of stars was visible. After a careful analysis of their brightnesses and temperatures, the astronomers concluded that these stars did not belong to the cluster – which is part of the Milky Way – but rather they are millions of light-years more distant.

- Our newly discovered cosmic neighbor, nicknamed Bedin I by the astronomers, is a modestly sized, elongated galaxy. It measures only around 3000 light-years at its greatest extent – a fraction of the size of the Milky Way. Not only is it tiny, but it is also incredibly faint. These properties led astronomers to classify it as a dwarf spheroidal galaxy.

- Dwarf spheroidal galaxies are defined by their small size, low-luminosity, lack of dust and old stellar populations [1]. 36 galaxies of this type are already known to exist in the Local Group of Galaxies, 22 of which are satellite galaxies of the Milky Way.
[1] While similar to dwarf elliptical galaxies in appearance and properties, dwarf spheroidal galaxies are in general approximately spherical in shape and have a lower luminosity.

- While dwarf spheroidal galaxies are not uncommon, Bedin I has some notable features. Not only is it one of just a few dwarf spheroidals that have a well established distance but it is also extremely isolated. It lies about 30 million light-years from the Milky Way and 2 million light-years from the nearest plausible large galaxy host, NGC 6744. This makes it possibly the most isolated small dwarf galaxy discovered to date.

- From the properties of its stars, astronomers were able to infer that the galaxy is around 13 billion years old – nearly as old as the Universe itself. Because of its isolation – which resulted in hardly any interaction with other galaxies – and its age, Bedin I is the astronomical equivalent of a living fossil from the early Universe.

Hubble_Auto50

Figure 16: The accidentally discovered galaxy Bedin I (image credit: ESA/Hubble, NASA, Bedin et al., CC BY 4.0)

- The discovery of Bedin I was a truly serendipitous find. Very few Hubble images allow such faint objects to be seen, and they cover only a small area of the sky. Future telescopes with a large field of view, such as the WFIRST telescope, will have cameras covering a much larger area of the sky and may find many more of these galactic neighbors. 21)

Hubble_Auto4F

Figure 17: This composite image shows the location of the accidentally discovered dwarf galaxy Bedin I behind the globular cluster NGC 6752. The lower image, depicting the complete cluster, is a ground-based observation from the Digitized Sky Survey 2. The upper right image shows the full field of view of the NASA/ESA Hubble Space Telescope. The upper left one highlights the part containing the galaxy Bedin I (image credit: ESA/Hubble, NASA, Bedin et al., Digitized Sky Survey 2, CC BY 4.0)

• 24 January 2019: The rough-and-tumble environment near the center of the massive Coma galaxy cluster is no match for a wayward spiral galaxy. New images from NASA's Hubble Space Telescope show a spiral galaxy being stripped of its gas as it plunges toward the cluster's center. A long, thin streamer of gas and dust stretches like taffy from the galaxy's core and on into space. Eventually, the galaxy, named D100, will lose all of its gas and become a dead relic, deprived of the material to create new stars and shining only by the feeble glow of old, red stars. 22) 23)

- "This galaxy stands out as a particularly extreme example of processes common in massive clusters, where a galaxy goes from being a healthy spiral full of star formation to a 'red and dead galaxy,'" said William Cramer of Yale University in New Haven, Connecticut, leader of the team using the Hubble observations. "The spiral arms disappear, and the galaxy is left with no gas and only old stars. This phenomenon has been known about for several decades, but Hubble provides the best imagery of galaxies undergoing this process."

- Called "ram pressure stripping," the process occurs when a galaxy, due to the pull of gravity, falls toward the dense center of a massive cluster of thousands of galaxies, which swarm around like a hive of bees. During its plunge, the galaxy plows through intergalactic material, like a boat moving through water. The material pushes gas and dust from the galaxy. Once the galaxy loses all of its hydrogen gas — fuel for starbirth — it meets an untimely death because it can no longer create new stars. The gas-stripping process in D100 began roughly 300 million years ago.

- In the massive Coma cluster this violent gas-loss process occurs in many galaxies. But D100 is unique in several ways. Its long, thin tail is its most unusual feature. The tail, a mixture of dust and hydrogen gas, extends nearly 200,000 light-years, about the width of two Milky Way galaxies. But the pencil-like structure is comparatively narrow, only 7,000 light-years wide.

- "The tail is remarkably well-defined, straight and smooth, and has clear edges," explained team member Jeffrey Kenney, also of Yale University. "This is a surprise because a tail like this is not seen in most computer simulations. Most galaxies undergoing this process are more of a mess. The clean edges and filamentary structures of the tail suggest that magnetic fields play a prominent role in shaping it. Computer simulations show that magnetic fields form filaments in the tail's gas. With no magnetic fields, the tail is more clumpy than filamentary."

Hubble_Auto4E

Figure 18: The spiral galaxy D100, on the far right of this Hubble Space Telescope image, is being stripped of its gas as it plunges toward the center of the giant Coma galaxy cluster. The dark brown streaks near D100's central region are silhouettes of dust escaping from the galaxy. The dust is part of a long, thin tail, also composed of hydrogen gas, that stretches like taffy from the galaxy's core. Hubble, however, sees only the dust. The telescope's sharp vision also uncovered the blue glow of clumps of young stars in the tail. The brightest clump in the middle of the tail (the blue feature) contains at least 200,000 stars, fueled by the ongoing loss of hydrogen gas from D100 [image credit: NASA, ESA, M. Sun (University of Alabama), and W. Cramer and J. Kenney (Yale University)]

Legend to Figure 18: The gas-loss process occurs when D100, due to the pull of gravity, begins falling toward the dense center of the massive Coma cluster, consisting of thousands of galaxies. During its plunge, D100 plows through intergalactic material like a boat plowing through water. This material pushes gas and dust out of the galaxy. Once D100 loses all of its hydrogen gas, its star-making fuel, it can no longer create new stars. The gas-stripping process in the beleaguered galaxy began roughly 300 million years ago.

The reddish galaxies in the image contain older stars between the ages of 500 million to 13 billion years old. One of those galaxies is D99, just below and to the left of D100. It was stripped of its gas by the same process as the one that is siphoning gas from D100. The blue galaxies contain a mixture of young and old stars. Some of the stars are less than 500 million years old. The Coma cluster is located 330 million light-years from Earth. — The Hubble image is a blend of several exposures taken in visible light between May 10 and July 10, 2016, and November 2017 to January 2018, by the Advanced Camera for Surveys.

- The researchers' main goal was to study star formation along the tail. Hubble's sharp vision uncovered the blue glow of clumps of young stars. The brightest clump in the middle of the tail contains at least 200,000 stars, triggered by the ongoing gas loss from the galaxy. However, based on the amount of glowing hydrogen gas contained in the tail, the team had expected Hubble to uncover three times more stars than it detected.

- The Subaru Telescope in Hawaii observed the glowing tail in 2007 during a survey of the Coma cluster's galaxies. But the astronomers needed Hubble observations to confirm that the hot hydrogen gas contained in the tail was a signature of star formation.

- "Without the depth and resolution of Hubble, it's hard to say if the glowing hydrogen-gas emission is coming from stars in the tail or if it's just from the gas being heated," Cramer said. "These Hubble visible-light observations are the first and best follow-up of the Subaru survey."

- The Hubble data show that the gas-stripping process began on the outskirts of the galaxy and is moving in towards the center, which is typical in this type of mass loss. Based on the Hubble images, the gas has been cleared out all the way down to the central 6,400 light-years.

- Within that central region, there is still a lot of gas, as seen in a burst of star formation. "This region is the only place in the galaxy where gas exists and star formation is taking place," Cramer said. "But now that gas is being stripped out of the center, forming the long tail."

- Adding to this compelling narrative is another galaxy in the image that foreshadows D100's fate. The object, named D99, began as a spiral galaxy similar in mass to D100. It underwent the same violent gas-loss process as D100 is now undergoing, and is now a dead relic. All of the gas was siphoned from D99 between 500 million and 1 billion years ago. Its spiral structure has mostly faded away, and its stellar inhabitants consist of old, red stars. "D100 will look like D99 in a few hundred million years," Kenney said. — The Coma cluster is located 330 million light-years from Earth.

• 24 January, 2019: The Whirlpool Galaxy is a magnificent spiral galaxy that has been studied across the spectrum by NASA's Great Observatories. This remarkable video uses two dimensional images and three dimensional visualizations to contrast and compare the different views of infrared (Spitzer Space Telescope), visible (Hubble Space Telescope), and X-ray (Chandra X-ray Observatory) observations. Within these spectral bands, each wavelength region illustrates a different component of the stars, gas, and dust that comprise the galaxy. By both separating and combining seven multiwavelength views, astronomers gain a broader and richer look into the detailed structure of a spiral galaxy. 24)

Figure 19: A multiwavelength examination of the majestic Whirlpool Galaxy [video credit: NASA's Universe of Learning, Visualization: Frank Summers, Joseph DePasquale, Dani Player (STScI), Kim Arcand (SAO/CXC), Robert Hurt (Caltech/IPAC), Music: "Cylinder Five", Chris Zabriskie, CC BY 4.0]

• 21 January 2019: Gravitational lensing can help astronomers study objects that would otherwise be too faint or appear too small for us to view. When a massive object — such as a massive cluster of galaxies, as seen here — distorts space with its immense gravitational field, it causes light from more distant galaxies to travel along altered and warped paths. It also amplifies the light, making it possible for us to observe and study its source. 25)

Hubble_Auto4D

Figure 20: This picture showcases a gravitational lensing system called SDSS J0928+2031. Quite a few images of this type of lensing have been featured as Pictures of the Week in past months, as NASA/ESA Hubble Space Telescope data is currently being used to research how stars form and evolve in distant galaxies (image credit: ESA/Hubble & NASA, M. Gladders et al.)

- In this image, we see two dominant elliptical galaxies near the center of the image. The gravity from the galaxy cluster that is the home of these galaxies is acting as the aforementioned gravitational lens, allowing us to view the more distant galaxies sitting behind them. We see the effects of this lensing as narrow, curved streaks of light surrounding both of the large galaxies.

- This image was observed by Hubble as part of the Sloan Giant Arcs Survey program.

• 17 January 2019: The Hubble Space Telescope's Wide Field Camera 3 was brought back to full operational status and completed its first science observations just after noon EST today, 17 January. The instrument autonomously shut down on 8 January after internal data erroneously indicated invalid voltage levels. 26)

• 15 January 2019: NASA has moved closer to conducting science operations again with the Hubble Space Telescope's WFC3 (Wide Field Camera 3) instrument, which suspended operations on 8 January 2019. As of 15 January, the instrument was brought back to its operations mode. 27) 28)

- Shortly after noon EST (Eastern Standard Time) on 8 January, software installed on the Wide Field Camera 3 detected that some voltage levels within the instrument were out of the predefined range. The instrument autonomously suspended its operations as a safety precaution. Upon further investigation, the voltage levels appeared to be within normal range, yet the engineering data within the telemetry circuits for those voltage levels were not accurate. In addition, all other telemetry within those circuits also contained erroneous values indicating that this was a telemetry issue and not a power supply issue.

- After resetting the telemetry circuits and associated boards, additional engineering data were collected and the instrument was brought back to operations. All values were normal. Additional calibration and tests will be run over the next 48 to 72 hours to ensure that the instrument is operating properly. Further investigation using both the new and the previously collected engineering data will be conducted to determine why those data values were originally incorrect.

- Assuming that all tests work as planned, it is expected that the Wide Field Camera 3 will start to collect science images again by the end of the week.

- The Wide Field Camera 3 was installed during the last servicing mission to Hubble back in 2009. Over 2,000 peer-reviewed published papers have been produced from its data. Hubble itself is in its 29th year of operations, well surpassing its original 15-year lifetime.

- Hubble operations, like other satellite operations, are excepted activities as defined in the NASA furlough/shutdown plan. The current partial government shutdown does not affect its flight operations.

• 14 January 2019: Messier 89 is slightly smaller than the Milky Way, but has a few interesting features that stretch far out into the surrounding space. One structure of gas and dust extends up to 150 000 light-years out from the galaxy's center, which is known to house a supermassive black hole. Jets of heated particles reach out to 100 000 light-years from the galaxy, suggesting that Messier 89 may have once been far more active — perhaps an active quasar or radio galaxy — than it is now. It is also surrounded by an extensive system of shells and plumes, which may have been caused by past mergers with smaller galaxies — and implies that Messier 89 as we know it may have formed in the relatively recent past. 29)

- Messier 89 was discovered by astronomer Charles Messier in 1781, when Messier had been cataloguing astronomical objects for 23 years — ever since he mistook a faint object in the sky for Halley's Comet. Upon closer inspection, he realized the object was actually the Crab Nebula. To prevent other astronomers from making the same error, he decided to catalogue all the bright, deep-sky objects that could potentially be mistaken for comets. His methodical observations of the night sky led to the first comprehensive catalogue of astronomical objects: the Messier catalogue! Messier 89 holds the record for being the last ever giant elliptical to be found by Messier, and the most perfectly spherical galaxy in the entire catalogue of 110 objects.

Hubble_Auto4C

Figure 21: This huge ball of stars — around 100 billion in total — is an elliptical galaxy located some 55 million light-years away from us. Known as Messier 89, this galaxy appears to be perfectly spherical; this is unusual for elliptical galaxies, which tend to be elongated ellipsoids. The apparently spherical nature of Messier 89 could, however, be a trick of perspective, and be caused by its orientation relative to the Earth (image credit: ESA/Hubble & NASA, S. Faber, et al.)

• 9 January 2019: At 17:23 UTC on 8 January, the WFC3 (Wide Field Camera 3) on the Hubble Space Telescope suspended operations due to a hardware problem. Hubble will continue to perform science observations with its other three active instruments, while the Wide Field Camera 3 anomaly is investigated. WFC3, installed during Servicing Mission 4 in 2009, is equipped with redundant electronics should they be needed to recover the instrument. 30)

- There are concerns, however, that "engineers are unlikely to be able to fix the aging telescope until the ongoing U.S. government shutdown ends — whenever that might be," according to the science journal Nature. Engineers are unlikely to be able to fix the ageing telescope until the ongoing US government shutdown ends — whenever that might be. 31)

- Hubble's mission operations are based at NASA's Goddard Space Flight Center in Greenbelt, Maryland, where most employees are on involuntary leave during the shutdown. A few people who operate spacecraft that are actively flying, including Hubble, have been allowed to keep working.

- But fixing the telescope, which is almost 30 years old, will almost certainly require additional government employees who are forbidden to work during the shutdown. NASA has formed an investigative team, composed primarily of contractors and experts from its industry partners, to examine the technical troubles.

- Federal law allows agencies to keep some personnel working during a shutdown if they are deemed necessary for protecting life and property. It is not clear whether NASA will request an emergency exception to allow repairs to Hubble before the shutdown — now on its nineteenth day — ends.

- An e-mail to a NASA press officer seeking comment prompted this automatic reply: "I am in furlough status and unable to respond to your message at this time."

- Last October, Hubble stopped working entirely for three weeks after the failure of one of the gyroscopes that it uses to orient itself in space. Engineers fixed the problem, but the rescue effort required input from experts from across NASA, including many who are currently furloughed.

- The STScI (Space Telescope Science Institute) in Baltimore, Maryland, which runs Hubble's science operations, remains open for now, using money it received from NASA before the shutdown started. But many of Hubble's technical experts are based at Goddard, which is closed.

- The risk of not being able to fix Hubble if something broke is one of the impacts scientists were worried about as the government shutdown began on 22 December.

- The shutdown, which affects roughly 75% of the government, is now in its third week with no end in sight. If it persists until 12 January, it will break the record for longest shutdown, which was set by a 21-day event that began on 16 December 1995.

• 8 January 2019: Astronomers have found a new exoplanet that could alter the standing theory of planet formation. With a mass that's between that of Neptune and Saturn, and its location beyond the "snow line" of its host star, an alien world of this scale was supposed to be rare. 32)

- Aparna Bhattacharya, a postdoctoral researcher from the University of Maryland and NASA's Goddard Space Flight Center (GSFC), led the team that made the discovery, which was announced today during a press conference at the 233rd Meeting of the American Astronomical Society in Seattle.

- Using the Near-Infrared Camera, second generation (NIRC2) instrument on the 10-meter Keck II telescope of the W. M. Keck Observatory on Maunakea, Hawaii and the WFC3 (Wide Field Camera 3) instrument on the Hubble Space Telescope, the researchers took simultaneous high-resolution images of the exoplanet, named OGLE-2012-BLG-0950Lb, allowing them to determine its mass.

- "We were surprised to see the mass come out right in the middle of the predicted intermediate giant planet mass gap," said Bhattacharya. "It's like finding an oasis in the middle of the exoplanet desert!"

- "I was very pleased with how quickly Aparna completed the analysis," said co-author David Bennett, a senior research scientist at the University of Maryland and GSFC. "She had to develop some new methods to analyze this data — a type of analysis that had never been done before."

- In an uncanny timing of events, another team of astronomers (which included Bhattacharya and Bennett) published a statistical analysis at almost the same time showing that such sub-Saturn mass planets are not rare after all.

- "We were just finishing up the analysis when the mass measurements of OGLE-2012- BLG-0950Lb came in," said lead author Daisuke Suzuki of Japan's ISAS (Institute of Space and Astronautical Science). "This planet confirmed our interpretation of the statistical study."

- The teams' results on OGLE-2012-BLG-0950Lb are published in the December issue of The Astronomical Journal and the statistical study was published in the December 20th issue of the Astrophysical Journal Letters. 33)

- OGLE-2012-BLG-0950Lb was among the sub-Saturn planets in the statistical study; all were detected through microlensing, the only method currently sensitive enough to detect planets with less than Saturn's mass in Jupiter-like orbits.

- Microlensing leverages a consequence of Einstein's theory of general relativity: the bending and magnification of light near a massive object like a star, producing a natural lens on the sky. In the case of OGLE-2012-BLG-0950Lb, the light from a distant background star was magnified by OGLE-2012-BLG-0950L (the exoplanet's host star) over the course of two months as it passed close to perfect alignment in the sky with the background star.

- By carefully analyzing the light during the alignment, an unexpected dimming with a duration of about a day was observed, revealing the presence of OGLE-2012-BLG-0950Lb via its own influence on the lensing.

Hubble_Auto4B

Figure 22: Planet OGLE-2012-BLG-0950Lb was detected through gravitational microlensing, a phenomenon that acts as nature's magnifying glass (image credit: LCO, D. Bennett)

Methodology

- OGLE-2012-BLG-0950Lb was first detected by the microlensing survey telescopes of the Optical Gravitational Lensing Experiment (OGLE) and the Microlensing Observations in Astrophysics (MOA) collaborations.

- Bhattacharya's team then conducted follow-up observations using Keck Observatory's powerful adaptive optics system in combination with NIRC2.

- "The Keck observations allowed us to determine that the sub-Saturn or super-Neptune size planet has a mass of 39 times that of the Earth, and that its host star is 0.58 times the mass of the Sun," said Bennett. "They measured the separation of the foreground planetary system from the background star. This allowed us to work out the complete geometry of the microlensing event. Without this data, we only knew the star-planet mass ratio, not the individual masses."

- For the statistical study, Suzuki's team and MOA analyzed the properties of 30 sub-Saturn planets found by microlensing and compared them to predictions from the core accretion theory.

Challenging the Theory

- What is unique about the microlensing method is its sensitivity to sub-Saturn planets like OGLE-2012-BLG-0950Lb that orbit beyond the "snow line" of their host stars.

- The snow line, or frost line, is the distance in a young solar system, (a.k.a. a protoplanetary disk) at which it is cold enough for water to condense into ice. At and beyond the snow line there is a dramatic increase in the amount of solid material needed for planet formation. According to the core accretion theory, the solids are thought to build up into planetary cores first through chemical and then gravitational processes.

- "A key process of the core accretion theory is called "runaway gas accretion," said Bennett. "Giant planets are thought to start their formation process by collecting a core mass of about 10 times the Earth mass in rock and ice. At this stage, a slow accretion of hydrogen and helium gas begins until the mass has doubled. Then, the accretion of hydrogen and helium is expected to speed up exponentially in this runaway gas accretion process. This process stops when the supply is exhausted. If the supply of gas is stopped before runaway accretion stops, we get "failed Jupiter" planets with masses of 10-20 Earth-masses (like Neptune)."

- The runaway gas accretion scenario of the core accretion theory predicts that planets like OGLE-2012- BLG-0950Lb are expected to be rare. At 39 times the mass of the Earth, planets this size are thought to be continuing through a stage of rapid growth, ending in a much more massive planet. This new result suggests that the runaway growth scenario may need revision.

- Suzuki's team compared the distribution of planet-star mass ratios found by microlensing to distributions predicted by the core accretion theory. They found that the core accretion theory's runaway gas accretion process predicts about 10 times fewer intermediate mass giant planets like OGLE-2012- BLG-0950Lb than are seen in the microlensing results.

- This discrepancy implies that gas giant formation may involve processes that have been overlooked by existing core accretion models, or that the planet forming environment varies considerably as a function of host star mass.

Next Steps

- This discovery has not only called into question an established theory, it was made using a new technique that will be a key part of NASA's next big planet finding mission, the Wide Field Infra-Red Survey Telescope (WFIRST), which is scheduled to launch into orbit in the mid-2020s.

- "This is exactly the method that WFIRST will use to measure the masses of the planets that it discovers with its exoplanet microlensing survey. Until WFIRST comes online, we need to develop this method with observations from our Keck Key Strategic Mission Support (KSMS) program as well as observations from Hubble," said Bennett.

- "It's very exciting to see Keck and Hubble combine forces to provide this surprising new result," said Keck Observatory Chief Scientist John O'Meara. "And it's equally exciting to know that we can make these kind of advances today to help facilitate the best science from WFIRST and Keck's partnership in the future."

- The NASA Keck KSMS program will continue to make follow-up observations of microlensing events detected by telescopes on the ground and in space.

• 8 January 2019: Rocky planets orbiting red dwarf stars may be bone dry and lifeless, according to a new study using NASA's Hubble Space Telescope. Water and organic compounds, essential for life as we know it, may get blown away before they can reach the surface of young planets. 34)

- This hypothesis is based on surprising observations of a rapidly eroding dust-and-gas disk encircling the young, nearby red dwarf star AU Microscopii (AU Mic) by Hubble and the European Southern Observatory's VLT (Very Large Telescope) in Chile. Planets are born in disks like this one. - Red dwarfs, which are smaller and fainter than our Sun, are the most abundant and longest-lived stars in the galaxy.

- Fast-moving blobs of material appear to be ejecting particles from the AU Mic disk. If the disk continues to dissipate at this rapid pace, it will be gone in about 1.5 million years. In that short time, icy material from comets and asteroids could be cleared out of the disk. Comets and asteroids are important because they are believed to have seeded rocky planets such as Earth with water and organic compounds, the chemical building blocks for life. If this same transport system is needed for planets in the AU Mic system, then they may end up "dry" and dusty—inhospitable for life as we know it.

- "The Earth, we know, formed 'dry,' with a hot, molten surface, and accreted atmospheric water and other volatiles for hundreds of millions of years, being enriched by icy material from comets and asteroids transported from the outer solar system," said co-investigator Glenn Schneider of Steward Observatory in Tucson, Arizona. The observations are led by John Wisniewski of the University of Oklahoma in Norman, whose team is composed of 14 astronomers from the U.S. and Europe. 35)

- If the activity around AU Mic is typical of the planet-birthing process among red dwarfs, it could further reduce prospects of habitable worlds across our galaxy. Previous observations suggest that a torrent of ultraviolet light from young red dwarf stars quickly strips away the atmosphere of any orbiting planets. This particular star is only 23 million years old.

Hubble_Auto4A

Figure 23: These two NASA Hubble Space Telescope images, taken six years apart, show fast-moving blobs of material sweeping outwardly through a debris disk around the young, nearby red dwarf star AU Microscopii (AU Mic). Red dwarfs are the most abundant and longest-lived stars in our Milky Way galaxy. AU Mic is approximately 23 million years old. The top image was taken in 2011; the bottom in 2017. Hubble's Space Telescope Imaging Spectrograph (STIS) took the images in visible light. This comparison of the two images shows the six-year movement of one of the known blobs (marked by an arrow). Researchers estimate that the blob, which is zipping along at nearly 15,000 miles an hour, traveled more that 820 million miles between 2011 and 2017. That is about the distance from Earth to Saturn. Astronomers do not know how the blobs are launched through the system. Eventually, the blob highlighted in the image will sweep through the disk, escape the star's gravitational grip, and race out into space. Astronomers expect the string of blobs to clear out the disk within 1.5 million years. Their estimated ejection speeds are between 9,000 miles per hour and 27,000 miles per hour, fast enough to escape the star's gravitational clutches. They currently range in distance from roughly 930 million miles to more than 5.5 billion miles from the star. The disk, seen edge-on, is illuminated by scattered light from the star. The glare of the star, located at the center of the disk, has been blocked out by the STIS coronagraph so that astronomers can see more structure in the disk. The bright dot above the left side of the disk in the 2017 image is a background star. The system resides 32 light-years away in the southern constellation Microscopium [image credit: NASA, ESA, J. Wisniewski (University of Oklahoma), C. Grady (Eureka Scientific), and G. Schneider (Steward Observatory)]

- Surveys have shown that terrestrial planets are common around red dwarfs. In fact, they should contain the bulk of our galaxy's planet population, which could number tens of billions of worlds. Planets have been found within the habitable zone of several nearby red dwarfs, but their physical characteristics are largely unknown.

Blown Out by Blobs

- Observations by Hubble's Space Telescope Imaging Spectrograph (STIS) and the VLT show that the AU Mic circumstellar disk is being excavated by fast-moving blobs of circumstellar material, which are acting like a snowplow by pushing small particles—possibly containing water and other volatiles—out of the system. Researchers don't yet know how the blobs were launched. One theory is that powerful mass ejections from the turbulent star expelled them. Such energetic activity is common among young red dwarfs.

- "These observations suggest that water-bearing planets might be rare around red dwarfs because all the smaller bodies transporting water and organics are blown out as the disk is excavated," explained Carol Grady of Eureka Scientific in Oakland, California, co-investigator on the Hubble observations.

- Conventional theory holds that billions of years ago Earth formed as a comparatively dry planet. Gravitationally perturbed asteroids and comets, rich in water from the cooler outer solar system, bombarded Earth and seeded the surface with ice and organic compounds. "However, this process may not work in all planetary systems," Grady said.

Hubble_Auto49

Figure 24: The Hubble Space Telescope image on the left is an edge-on view of a portion of a vast debris disk around the young, nearby red dwarf star AU Microscopii (AU Mic). Though planets may have already formed in the disk, Hubble is tracking the movement of several huge blobs of material that could be "snowplowing" remaining debris out of the system, including comets and asteroids. The box in the image at left highlights one blob of material extending above and below the disk. Hubble's Space Telescope Imaging Spectrograph (STIS) took the picture in 2018, in visible light. The glare of the star, located at the center of the disk, has been blocked out by the STIS coronagraph so that astronomers can see more structure in the disk. The STIS close-up image at right reveals, for the first time, details in the blobby material, including a loop-like structure and a mushroom-shaped cap. Astronomers expect the train of blobs to clear out the disk within only 1.5 million years. The consequences are that any rocky planets could be left bone-dry and lifeless, because comets and asteroids will no longer be available to glaze the planets with water or organic compounds. AU Mic is approximately 23 million years old. The system resides 32 light-years away in the southern constellation Microscopium. Credit: NASA, ESA, J. Wisniewski (University of Oklahoma), [image credit: C. Grady (Eureka Scientific), and G. Schneider (Steward Observatory)]

- The team determined the disk's lifespan by using an estimated mass of the disk from an independent study, as well as calculating the mass of the escaping blobs in their STIS visible-light data. The mass of each blob is about four ten-millionths the mass of Earth. The disk's mass—about 1.7 times more massive than Earth—is based on data taken by the ALMA (Atacama Large Millimeter/submillimeter Array ).

- Although the mass of the wayward blobs seems tiny, the diameter of each blob could stretch at least from the Sun to Jupiter. At present, the team has spotted six outbound blobs, but it is possible that there is a continuous stream of them. Groups of blobs careening through the disk could sweep out material fairly quickly.

- "The fast dissipation of the disk is not something I would have expected," Grady said. "Based on the observations of disks around more luminous stars, we had expected disks around fainter red dwarf stars to have a longer time span. In this system, the disk will be gone before the star is 25 million years old." She added that AU Mic likely started out with an outer rim of small icy bodies, like the Kuiper belt found within our own solar system. If the disk weren't being eroded, it would have provided ices to any dry inner planets.

Probing the Blob Mystery

- Hubble astronomers spotted the blobs in STIS visible-light images taken in 2010-2011. As a follow-up to the Hubble study, the SPHERE (Spectro-Polarimetric High-contrast Exoplanet Research) instrument mounted on the European Southern Observatory's Very Large Telescope in Chile, made near-infrared observations. Features in the disk were hinted at in observations taken in 2004 by ground-based telescopes and Hubble's Advanced Camera for Surveys.

- So far, the team has uncovered blobs on the disk's southeast side, with estimated ejection speeds between 9,000 miles per hour and 27,000 miles per hour, fast enough to escape the star's gravitational clutches. They currently range in distance from roughly 930 million miles to more than 5.5 billion miles from the star.

- Hubble is also showing that these blobs may not just be giant balls of dusty debris. The telescope has resolved substructure in one of the blobs, including a mushroom-shaped cap above the plane of the disk itself and a complex "loop-like" structure below the disk. "These structures could yield clues to the mechanisms that drive these blobs," Schneider said. - The system resides 32 light-years away in the southern constellation Microscopium.

- "AU Mic is ideally placed," Schneider said. "But it is only one of about three or four red-dwarf systems with known starlight-scattering disks of circumstellar debris. The other known systems are typically about six times farther away, so it's challenging to conduct a detailed study of the types of features in those disks that we see in AU Mic."

- However, astronomers are beginning to identify some possibly similar activity in these other systems. "It shows that AU Mic is not unique," Grady said. "In fact, you could argue that because it is one of the nearest systems of this type, it would be unlikely that it would be unique."

- The AU Mic observations show the importance of a star's disk environment on planet formation and evolution. "What we have learned is that disks seem to be a normal part of the history of planetary systems," Grady said. "If you don't understand a star's disk, you don't have a good understanding of the resulting planetary system."

• 7 January 2019: The NASA/ESA Hubble Space Telescope has captured the most detailed image yet of a close neighbor of the Milky Way – the Triangulum Galaxy, a spiral galaxy located at a distance of only three million light-years. This panoramic survey of the third-largest galaxy in our Local Group of galaxies provides a mesmerizing view of the 40 billion stars that make up one of the most distant objects visible to the naked eye. 36)

- This new image of the Triangulum Galaxy – also known as Messier 33 or NGC 598 – has a staggering 665 million pixels and showcases the central region of the galaxy and its inner spiral arms. To stitch together this gigantic mosaic, Hubble's ACS (Advanced Camera for Surveys) needed to create 54 separate images.

- Under excellent dark-sky conditions, the Triangulum Galaxy can be seen with the naked eye as a faint, blurry object in the constellation of Triangulum (the Triangle), where its ethereal glow is an exciting target for amateur astronomers.

- At only three million light-years from Earth, the Triangulum Galaxy is a notable member of the Local Group – it is the group's third-largest galaxy, but also the smallest spiral galaxy in the group [1]. It measures only about 60 000 light-years across, compared to the 200 000 light-years of the Andromeda Galaxy; the Milky Way lies between these extremes at about 100 000 light-years in diameter [2].
Note 1: Our galaxy, the Milky Way, is part of the Local Group, an assembly of more than 50 galaxies bound together by gravity. Its largest member is the Andromeda Galaxy – also known as Messier 31 – followed by the Milky Way and the Triangulum Galaxy. The remaining members of the Local Group are dwarf galaxies, each orbiting one of the three larger ones.
Note 2: The much bigger Andromeda Galaxy was mapped by Hubble in 2015, creating the sharpest and largest image of this galaxy and the largest Hubble image ever (heic1502).

- The Triangulum Galaxy is not only surpassed in size by the other two spirals, but by the multitude of stars they contain. The Triangulum Galaxy has at least an order of magnitude less stars than the Milky Way and two orders of magnitude less than Andromeda. These numbers are hard to grasp when already in this image 10 to 15 million individual stars are visible.

Hubble_Auto48

Figure 25: This gigantic image of the Triangulum Galaxy – also known as Messier 33 – is a composite of about 54 different pointings with Hubble's Advanced Camera for Surveys. With a staggering size of 34,372 times 19,345 pixels, it is the second-largest image ever released by Hubble. The mosaic of the Triangulum Galaxy showcases the central region of the galaxy and its inner spiral arms. Millions of stars, hundreds of star clusters and bright nebulae are visible. This image is too large to be easily displayed at full resolution and is best appreciated using the zoom tool [image credit: NASA, ESA, and M. Durbin, J. Dalcanton, and B. F. Williams (University of Washington)]

- In contrast to the two larger spirals, the Triangulum Galaxy doesn't have a bright bulge at its center and it also lacks a bar connecting its spiral arms to the center. It does, however, contain a huge amount of gas and dust, giving rise to rapid star formation. New stars form at a rate of approximately one solar mass every two years.

- The abundance of gas clouds in the Triangulum Galaxy is precisely what drew astronomers to conduct this detailed survey. When stars are born, they use up material in these clouds of gas and dust, leaving less fuel for new stars to emerge. Hubble's image shows two of the four brightest of these regions in the galaxy: NGC 595 and NGC 604. The latter is the second most luminous region of ionized hydrogen within the Local Group and it is also among the largest known star formation regions in the Local Group.

- These detailed observations of the Triangulum Galaxy have tremendous legacy value – combined with those of the Milky Way, the Andromeda Galaxy and the irregular Magellanic Cloud galaxies, they will help astronomers to better understand star formation and stellar evolution.

• 21 December 2018: The bright southern hemisphere star RS Puppis, at the center of the image (Figure 26), is swaddled in a gossamer cocoon of reflective dust illuminated by the glittering star. The super star is ten times more massive than the Sun and 200 times larger. 37)

- RS Puppis rhythmically brightens and dims over a six-week cycle. It is one of the most luminous in the class of so-called Cepheid variable stars. Its average intrinsic brightness is 15,000 times greater than the Sun's luminosity.

- The nebula flickers in brightness as pulses of light from the Cepheid propagate outwards. Hubble took a series of photos of light flashes rippling across the nebula in a phenomenon known as a "light echo." Even though light travels through space fast enough to span the gap between Earth and the Moon in a little over a second, the nebula is so large that reflected light can actually be photographed traversing the nebula.

- By observing the fluctuation of light in RS Puppis itself, as well as recording the faint reflections of light pulses moving across the nebula, astronomers are able to measure these light echoes and pin down a very accurate distance. The distance to RS Puppis has been narrowed down to 6,500 light-years (with a margin of error of only one percent).

Hubble_Auto47

Figure 26: This festive NASA Hubble Space Telescope image resembles a holiday wreath made of sparkling lights (image credit: NASA, ESA and the Hubble Heritage Team (STScI/AURA) – Hubble/Europe Collaboration; Acknowledgement: H. Bond (STScI and Pennsylvania State University)

• 20 December 2018: Astronomers using data from the NASA/ESA Hubble Space Telescope have employed a revolutionary method to detect dark matter in galaxy clusters. The method allows astronomers to "see" the distribution of dark matter more accurately than any other method used to date and it could possibly be used to explore the ultimate nature of dark matter. The results were published in the journal Monthly Notices of the Royal Astronomical Society. 38)

- In recent decades astronomers have tried to understand the true nature of the mysterious substance that makes up most of the matter in the Universe – dark matter – and to map its distribution in the Universe.
Note 1: Dark matter makes up about 85% of the matter in the Universe, and about a quarter of its total energy density. Dark matter does not emit any kind of electromagnetic radiation – its presence can only be determined via gravitational effects.

Now two astronomers from Australia and Spain have used data from the Frontier Fields program of the NASA/ESA Hubble Space Telescope to accurately study the distribution of dark matter.
Note 2: The Hubble Frontier Fields program was a deep imaging initiative designed to utilize the strong gravitational lensing effects in galaxy clusters to see extremely distant galaxies and thereby gain insight into the early Universe and the evolution of galaxies since that time. The program observed six galaxy clusters over 630 hours of Hubble's time. To receive the new results presented here the data was used in a different way, without using gravitational lensing.

- "We have found a way to 'see' dark matter," explains Mireia Montes (University of New South Wales, Australia), lead author of the study. "We have found that very faint light in galaxy clusters, the intracluster light, maps how dark matter is distributed." 39)

- Intracluster light is a byproduct of interactions between galaxies. In the course of these interactions, individual stars are stripped from their galaxies and float freely within the cluster. Once free from their galaxies, they end up where the majority of the mass of the cluster, mostly dark matter, resides.

Hubble_Auto46

Figure 27: Abell S1063, a galaxy cluster, was observed by the NASA/ESA Hubble Space Telescope as part of the Frontier Fields program. The huge mass of the cluster – containing both baryonic matter and dark matter – acts as cosmic magnification glass and deforms objects behind it. In the past astronomers used this gravitational lensing effect to calculate the distribution of dark matter in galaxy clusters (image credit: NASA, ESA, and M. Montes (University of New South Wales, Sydney, Australia)

- "These stars have an identical distribution to the dark matter, as far as our current technology allows us to study," explained Montes. Both the dark matter and these isolated stars – which form the intracluster light – act as collisionless components. These follow the gravitational potential of the cluster itself. The study showed that the intracluster light is aligned with the dark matter, tracing its distribution more accurately than any other method relying on luminous tracers used so far.

- This method is also more efficient than the more complex method of using gravitational lensing. While the latter requires both accurate lensing reconstruction and time-consuming spectroscopic campaigns, the method presented by Montes utilizes only deep imaging. This means more clusters can be studied with the new method in the same amount of observation time.

- The results of the study introduce the possibility of exploring the ultimate nature of dark matter. "If dark matter is self-interacting we could detect this as tiny departures in the dark matter distribution compared to this very faint stellar glow," highlights Ignacio Trujillo (Instituto de Astrofísica de Canarias, Spain), co-author of the study. Currently, all that is known about dark matter is that it appears to interact with regular matter gravitationally, but not in any other way. To find that it self-interacts would place significant constraints on its identity.

- For now, Montes and Trujillo plan to survey more of the original six clusters to see if their method remains accurate. Another important test of their method will be the observation and analysis of additional galaxy clusters by other research teams, to add to the data set and confirm their findings.

- The team can also look forward to the application of the same techniques using future space-based telescopes like the NASA/ESA/CSA James Webb Space Telescope, which will have even more sensitive instruments able to resolve faint intracluster light in the distant Universe.

- "There are exciting possibilities that we should be able to probe in the upcoming years by studying hundreds of galaxy clusters," concludes Ignacio Trujillo.

• 14 December 2018: The speed and distance at which planets orbit their respective blazing stars can determine each planet's fate - whether the planet remains a longstanding part of its solar system or evaporates into the universe's dark graveyard more quickly. - In their quest to learn more about far-away planets beyond our own solar system, astronomers discovered that a medium-sized planet roughly the size of Neptune, GJ 3470b, is evaporating at a rate 100 times faster than a previously discovered planet of similar size, GJ 436b. 40)

- The findings, published in the journal of Astronomy and Astrophysics, advance astronomers' knowledge about how planets evolve. 41)

- The study is part of the Panchromatic Comparative Exoplanet Treasury (PanCET) program, led by Sing, which aims to measure the atmospheres of 20 exoplanets in ultraviolet, optical and infrared light, as they orbit their stars. PanCET is the largest exoplanet observation program to be run with NASA's Hubble Space Telescope.

- One particular issue of interest to astronomers is how planets lose their mass through evaporation. Planets such as "super" Earths and "hot" Jupiters orbit more closely to their stars and are therefore hotter, causing the outermost layer of their atmospheres to be blown away by evaporation.

- While these larger Jupiter-sized and smaller Earth-sized exoplanets are plentiful, medium Neptune-sized exoplanets (roughly four times larger than Earth) are rare. Researchers hypothesize that these Neptunes get stripped of their atmospheres and ultimately become smaller planets.

- It's difficult, however, to actively witness them doing so because they can only be studied in UV light, which limits researchers to examining nearby stars no greater than 150 light-years away from earth, not obscured by interstellar material. GJ 3470b is 96 light-years away and circles a red dwarf star in the general direction of the constellation Cancer.

Hubble_Auto45

Figure 28: This graphic plots exoplanets based on their size and distance from their star. Each dot represents an exoplanet. Planets the size of Jupiter (located at the top of the graphic) and planets the size of Earth and so-called super-Earths (at the bottom) are found both close and far from their star. But planets the size of Neptune (in the middle of the plot) are scarce close to their star. This so-called desert of hot Neptunes shows that such alien worlds are rare, or, they were plentiful at one time, but have since disappeared. The detection that GJ 3470b, a warm Neptune at the border of the desert, is fast losing its atmosphere suggests that hotter Neptunes may have eroded down to smaller, rocky super-Earths (image credit: International Team, STSI)

- In this study, Hubble found that exoplanet GJ 3470b had lost significantly more mass and had a noticeably smaller exosphere than the first Neptune-sized exoplanet studied, GJ 436b, due to its lower density and receipt of a stronger radiation blast from its host star.

- GJ 3470b's lower density makes it unable to gravitationally hang on to the heated atmosphere, and while the star hosting GJ 436b was between 4 billion and 8 billion years old, the star hosting GJ 3470b is only 2 billion years old; a younger star is more active and powerful, and, therefore, has more radiation to heat the planet's atmosphere.

- Sing's team estimates that GJ 3470b may have already lost up to 35 percent of its total mass and, in a few billion years, all of its gas may be stripped off, leaving behind only a rocky core.

- "We're starting to better understand how planets are shaped and what properties influence their overall makeup," Sing said. "Our goal with this study and the overarching PanCET program is to take a broad look at these planets' atmospheres to determine how each planet is affected by its own environment. By comparing different planets, we can start piecing together the larger picture in how they evolve."

- Looking forward, Sing and the team hope to study more exoplanets by searching for helium in infrared light, which will allow a greater search range than searching for hydrogen in UV light.

- Currently, planets, which are made largely of hydrogen and helium, can only be studied through tracing hydrogen in UV light. Using Hubble, the upcoming NASA James Webb Space Telescope (which will have a greater sensitivity to helium), and a new instrument called Carmenes that Sing recently found can precisely track the trajectory of helium atoms, astronomers will be able to broaden their pursuit of distant planets.

• 4 December 2018: Twenty-five years ago this week, NASA held its collective breath as seven astronauts on space shuttle Endeavour caught up with the Hubble Space Telescope 353 miles (568 kilometers) above Earth. Their mission: to fix a devastating flaw in the telescope's primary mirror. 42)

- Hubble Space Telescope has a primary mirror of 2.4 m in aperture. The largest optical telescope launched into space, where it could observe the universe free from the distorting effects of Earth's atmosphere, Hubble had a lot riding on it. But after the first images were obtained and carefully analyzed following the telescope's deployment on April 25, 1990, it was clear that something was wrong: The images were blurry.

- Astronomers and engineers rallied to study a variety of solutions to the problem, and NASA convened an independent committee to find the source. They all came to the same conclusion: Hubble's primary mirror, which looks like a very shallow bowl, had been polished into the wrong shape. The error was smaller than the width of a human hair, but the effect was significant. If the error went uncorrected, Hubble would never reach its full potential.

- During the week of 6 December 1993, the astronaut crew installed two pieces of hardware intended to fix the error. The Corrective Optics Space Telescope Axial Replacement (COSTAR) was designed and built by a team at NASA's Goddard Spaceflight Center in Greenbelt, Maryland, and would correct for the mirror error in three of the five instruments on Hubble.

- The second instrument was the Wide Field and Planetary Camera 2 (WFPC2), designed and built at NASA's Jet Propulsion Laboratory in Pasadena, California. WFPC2, which actually contains four cameras, would go on to produce many of Hubble's breathtaking images, helping transform our view of the cosmos.

- The size of baby grand piano, the instrument imaged objects and events that occurred in our own solar system - such as comet Shoemaker-Levy 9's crash into Jupiter - to the most distant cosmological images that had ever been taken in visible light. It generated breathtaking snapshots of galaxies, exploded stars and nebulae where new stars are born. During the instrument's tenure, Hubble managers pointed the telescope at a single, black patch of sky for more than a week and found thousands of previously unseen galaxies.

- But WFPC2's success was far from guaranteed. The instrument was built on an incredibly tight timeline, and designing it to correct the flaw was something JPL's John Trauger, principal investigator for WFPC2, would later describe as being akin to "trying to play baseball on the side of a hill."

Hubble_Auto44

Figure 29: Replacing the Wide Field and Planetary Camera. Astronaut Jeffrey Hoffman removes Wide Field and Planetary Camera 1 (WFPC 1) during change-out operations (image credit: NASA)

- "There's a lot of pressure when you're building a space instrument even under normal circumstances," said Dave Gallagher, JPL's associate director for strategic integration, who served as integration and test manager for WFPC2. "But when you're fixing something that will essentially make or break the reputation of the entire agency, the pressure goes through the roof."

A Mirror Image

- In June 1990, NASA announced that the Hubble telescope was not working as expected. WFPC2 team members say they remember that the reaction from the public and the media was often pessimistic or even incredulous. Trauger watched network news anchor Tom Brokaw begin his program that evening by saying, "The Hubble Telescope you've heard so much about - it's broken."

- "The promise of the Hubble program, the application of our best technology to push back the frontiers of astronomy, had been instantly transformed in the public eye to an icon of technical failure," Trauger wrote in an essay in 2007.

- Trauger brought his team together to work the problem. The telescope's primary and secondary mirrors collected light and fed it to the five onboard science instruments. The primary mirror could not be replaced and could not be returned to Earth for repairs. A solution would have to be found for each of Hubble's instruments. The COSTAR device provided corrective optics for three of them, eliminating the need to fully replace those instruments. But the same approach wouldn't work for the telescope's Wide Field and Planetary Camera (WFPC), the predecessor of WFPC2.

- Trauger and his team came up with a potential solution. The primary mirror error caused light striking different parts of the mirror to come into focus at different locations, so the team had to figure out how to redirect it to the appropriate focal point. Their solution was to reverse-engineer the problem: They would place four identical nickel-sized mirrors inside the instrument - one for each of the four cameras inside WFPC2 - with the same error as the flawed primary mirror, but where the primary mirror was too flat, the new mirrors would be curved too deeply. Together, these two errors would cancel each other, producing the equivalent of a single mirror with the correct shape.

- NASA accepted JPL's proposal to build a WFPC replacement. The agency had planned to carry out Hubble repair missions every three years and decided to maintain this schedule. The first repair mission was set for the fall of 1993. JPL would need to deliver the replacement by the winter of 1992 - just over 2 years away. The race to repair Hubble was on.

Under Pressure

- Two years was nowhere near enough time to build a new camera instrument from scratch. Thankfully, WFPC2 was already under construction at JPL; NASA had intended to eventually use it as an upgrade for WFPC or a replacement if the instrument ever failed.

- Even with work on WFPC2 already under way, the deadline required an accelerated schedule. Dave Rodgers and Larry Simmons, the WFPC2 project managers, held daily meetings with the leaders of each of WFPC2's several components to help stay on target.

- "The daily meetings kept the pressure on all of us, all the time," said Simmons, who retired from JPL in 2005. "We knew we only had a few years, and we had to get it done."

- While the corrective mirrors were small, they affected nearly every step of the building process and created "an endless string of novel problems," according to Trauger.

- To minimize the chance for error during WFPC2's installation in low-Earth orbit, the seven astronauts who were scheduled to execute the repair mission traveled to JPL to learn about the instrument and be trained on how to install it. They would be inserting WFPC2 into a cavity in the telescope's body, as if sliding it in a drawer. And although they would need to make sure that the electrical connections at the back of the instrument were secure, they had no way of reaching those connections; they could control only how they inserted the instrument.

- Complicating matters further was the weight of WFPC2: At more than 600 pounds (272 kilograms), it was unwieldy even in the microgravity of low-Earth orbit. One of the instrument's mirrors, called the pickoff mirror, was mounted on a short arm located outside the protective casing. Merely bumping the mirror would misalign the system and essentially ruin the entire instrument. During WFPC2's construction, Trauger and colleagues showed a model of the instrument to an astronaut, who bumped the pickoff mirror. Trauger couldn't help but wonder, "Is this an omen?"

Time to Fly

- The leaders of the WFPC2 team traveled to NASA's Kennedy Space Center in Florida for the early morning launch on Dec. 2, 1993. After departing Kennedy and seeking out an early breakfast, Gallagher remembers looking up at the predawn sky to see the space shuttle passing overhead and nearing Hubble; the objects appeared as two faint points of light in the sky as they orbited Earth.

- On the sixth day of the mission, astronauts Jeffrey Hoffman and Story Musgrave conducted a spacewalk to remove WFPC from Hubble and install WFPC2. Everything seemed to go as planned, but the real test was yet to come.

- The astronauts returned to Earth on Dec. 13, and the first raw data from WFPC2 came back on Dec. 18. The team put the data through the image-processing software and watched anxiously as the pictures began to ratchet across the screen. There was instant relief.

- "They were sharp," Trauger said of the images. "And it wasn't just that we had pictures that looked amazing, it was that we were making new discoveries right away. There were things in the images that we'd never seen before."

- NASA released those first images to the public on Jan. 13, 1994. The next day, the WFPC2 team presented the results to an overflow audience at the winter meeting of the American Astronomical Society.

- "When we showed the first images, the room erupted; we got a standing ovation," Trauger said. "You don't usually see that at an astronomy meeting!"

- The WFPC2 instrument operated on Hubble for over 15 years and took more than 135,000 observations of the universe. More than 3,500 science papers were written based on that data before the instrument was retired in 2009, and over 2,000 more have been published since.

- "WFPC2 didn't succeed by magic or luck; it succeeded because we had a competent and hardworking group of people who understood what was at stake and stepped up to the challenge," Gallagher said. "And just like with every project, I wish I could have transported that team with me to the next mission."

- In May of 2009, astronauts removed WFPC2 from Hubble and replaced it with the Wide Field Camera 3 (WFC3), which continues to operate today - 28 years after Hubble first switched on. WFPC2 was later placed on public display at the Smithsonian Air and Space Museum in Washington, D.C.

- The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

• 29 November 2018: Gazing across 300 million light-years into a monstrous city of galaxies, astronomers have used NASA's Hubble Space Telescope to do a comprehensive census of some of its most diminutive members: a whopping 22,426 globular star clusters found to date. 43)

- The survey, published in the November 9, 2018, issue of The Astrophysical Journal, will allow for astronomers to use the globular cluster field to map the distribution of matter and dark matter in the Coma galaxy cluster, which holds over 1,000 galaxies that are packed together. 44)

- Because globular clusters are much smaller than entire galaxies — and much more abundant — they are a much better tracer of how the fabric of space is distorted by the Coma cluster's gravity. In fact, the Coma cluster is one of the first places where observed gravitational anomalies were considered to be indicative of a lot of unseen mass in the universe — later to be called "dark matter."

- Among the earliest homesteaders of the universe, globular star clusters are snow-globe-shaped islands of several hundred thousand ancient stars. They are integral to the birth and growth of a galaxy. About 150 globular clusters zip around our Milky Way galaxy, and, because they contain the oldest known stars in the universe, were present in the early formative years of our galaxy.

- Some of the Milky Way's globular clusters are visible to the naked eye as fuzzy-looking "stars." But at the distance of the Coma cluster, its globulars appear as dots of light even to Hubble's super-sharp vision. The survey found the globular clusters scattered in the space between the galaxies. They have been orphaned from their home galaxy due to galaxy near-collisions inside the traffic-jammed cluster. Hubble revealed that some globular clusters line up along bridge-like patterns. This is telltale evidence for interactions between galaxies where they gravitationally tug on each other like pulling taffy.

- Astronomer Juan Madrid of the Australian Telescope National Facility in Sydney, Australia, first thought about the distribution of globular clusters in Coma when he was examining Hubble images that show the globular clusters extending all the way to the edge of any given photograph of galaxies in the Coma cluster.

- He was looking forward to more data from one of the legacy surveys of Hubble that was designed to obtain data of the entire Coma cluster, called the Coma Cluster Treasury Survey. However, halfway through the program, in 2006, Hubble's powerful Advanced Camera for Surveys (ACS) had an electronics failure. (The ACS was later repaired by astronauts during a 2009 Hubble servicing mission.)

Hubble_Auto43

Figure 30: This is a Hubble Space Telescope mosaic of a portion of the immense Coma cluster of over 1,000 galaxies, located 300 million light-years from Earth. Hubble's incredible sharpness was used to do a comprehensive census of the cluster's most diminutive members: a whopping 22,426 globular star clusters. Among the earliest homesteaders of the universe, globular star clusters are snow-globe-shaped islands of several hundred thousand ancient stars. The survey found the globular clusters scattered in the space between the galaxies. They have been orphaned from their home galaxies through galaxy tidal interactions within the bustling cluster. Astronomers will use the globular cluster field for mapping the distribution of matter and dark matter in the Coma galaxy cluster [image credit: NASA, ESA, J. Mack (STScI) and J. Madrid (Australian Telescope National Facility)]

- To fill in the survey gaps, Madrid and his team painstakingly pulled numerous Hubble images of the galaxy cluster taken from different Hubble observing programs. These are stored in the Space Telescope Science Institute's Mikulski Archive for Space Telescopes in Baltimore, Maryland. He assembled a mosaic of the central region of the cluster, working with students from the National Science Foundation's Research Experience for Undergraduates program. "This program gives an opportunity to students enrolled in universities with little or no astronomy to gain experience in the field," Madrid said.

- The team developed algorithms to sift through the Coma mosaic images that contain at least 100,000 potential sources. The program used globular clusters' color (dominated by the glow of aging red stars) and spherical shape to eliminate extraneous objects — mostly background galaxies unassociated with the Coma cluster.

- Though Hubble has superb detectors with unmatched sensitivity and resolution, their main drawback is that they have tiny fields of view. "One of the cool aspects of our research is that it showcases the amazing science that will be possible with NASA's planned Wide Field Infrared Survey Telescope (WFIRST) that will have a much larger field of view than Hubble," said Madrid. "We will be able to image entire galaxy clusters at once."

- The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.

• 26 November 2018: This dark, tangled web is an object named SNR 0454-67.2. It formed in a very violent fashion — it is a supernova remnant, created after a massive star ended its life in a cataclysmic explosion and threw its constituent material out into surrounding space. This created the messy formation we see in this NASA/ESA Hubble Space Telescope image, with threads of red snaking amidst dark, turbulent clouds. 45)

- SNR 0454-67.2 is situated in the Large Magellanic Cloud, a dwarf spiral galaxy that lies close to the Milky Way. The remnant is likely the result of a Type Ia supernova explosion; this category of supernovae is formed from the death of a white dwarf star, which grows and grows by siphoning material from a stellar companion until it reaches a critical mass and then explodes.

- As they always form via a specific mechanism — when the white dwarf hits a particular mass — these explosions always have a well-known luminosity, and are thus used as markers (standard candles) for scientists to obtain and measure distances throughout the Universe.

Hubble_Auto42

Figure 31: Tangled — cosmic edition (image credit: ESA/Hubble, NASA)

• 15 November 2018: Astronomers may have finally uncovered the long-sought progenitor to a specific type of exploding star by sifting through NASA Hubble Space Telescope archival data. The supernova, called a Type Ic, is thought to detonate after its massive star has shed or been stripped of its outer layers of hydrogen and helium. 46) 47)

- These stars could be among the most massive known — at least 30 times heftier than our Sun. Even after shedding some of their material late in life, they are expected to be big and bright. So it was a mystery why astronomers had not been able to nab one of these stars in pre-explosion images.

- Finally, in 2017, astronomers got lucky. A nearby star ended its life as a Type Ic supernova. Two teams of astronomers pored through the archive of Hubble images to uncover the putative precursor star in pre-explosion photos taken in 2007. The supernova, catalogued as SN 2017ein, appeared near the center of the nearby spiral galaxy NGC 3938, located roughly 65 million light-years away.

- This potential discovery could yield insight into stellar evolution, including how the masses of stars are distributed when they are born in batches.

- "Finding a bona fide progenitor of a supernova Ic is a big prize of progenitor searching," said Schuyler Van Dyk of the California Institute of Technology (Caltech) in Pasadena, lead researcher of one of the teams. "We now have for the first time a clearly detected candidate object." His team's paper was published in June in The Astrophysical Journal.

- A paper by a second team, which appeared in the Oct. 21, 2018, issue of the Monthly Notices of the Royal Astronomical Society, is consistent with the earlier team's conclusions.

- "We were fortunate that the supernova was nearby and very bright, about 5 to 10 times brighter than other Type Ic supernovas, which may have made the progenitor easier to find," said Charles Kilpatrick of the University of California, Santa Cruz, leader of the second team. "Astronomers have observed many Type Ic supernovas, but they are all too far away for Hubble to resolve. You need one of these massive, bright stars in a nearby galaxy to go off. It looks like most Type Ic supernovas are less massive and therefore less bright, and that's the reason we haven't been able to find them."

Hubble_Auto41

Figure 32: This is an artist's concept of a blue supergiant star that once existed inside a cluster of young stars in the spiral galaxy NGC 3938, located 65 million light-years away. It exploded as a supernova in 2017, and Hubble Space Telescope archival photos were used to locate the doomed progenitor star, as it looked in 2007. The star may have been as massive as 50 suns and burned at a furious rate, making it hotter and bluer than our Sun. It was so hot, it had lost its outer layers of hydrogen and helium. When it exploded in 2017, astronomers categorized it as a Type Ic supernova because of the lack of hydrogen and helium in the supernova's spectrum. In an alternative scenario (not shown here) a binary companion to the massive star may have stripped off its hydrogen and helium layers [image credits: NASA, ESA, and J. Olmsted (STScI)]

- An analysis of the object's colors shows that it is blue and extremely hot. Based on that assessment, both teams suggest two possibilities for the source's identity. The progenitor could be a single hefty star between 45 and 55 times more massive than our Sun. Another idea is that it could have been a massive binary-star system in which one of the stars weighs between 60 and 80 solar masses and the other roughly 48 suns. In this latter scenario, the stars are orbiting closely and interact with each other. The more massive star is stripped of its hydrogen and helium layers by the close companion, and eventually explodes as a supernova.

Hubble_Auto40

Figure 33: This NASA Hubble Space Telescope image of the nearby spiral galaxy NGC 3938 shows the location of supernova 2017ein, in a spiral arm near the bright core. The exploded star is a Type Ic supernova, thought to detonate after its massive star has shed or been stripped of its outer layers of hydrogen and helium. Progenitor stars to Type Ic supernovas have been hard to find. But astronomers sifting through Hubble archival images may have uncovered the star that detonated as supernova 2017ein. The location of the candidate progenitor star is shown in the left pullout box at the bottom, taken in 2007. The bright object in the box at bottom right is a close-up image of the supernova, taken by Hubble in 2017, shortly after the stellar blast. NGC 3938 resides 65 million light-years away in the constellation Ursa Major. The Hubble image of NGC 3938 was taken in 2007 [image credits: NASA, ESA, S. Van Dyk (Caltech), and W. Li (University of California)]

- The possibility of a massive double-star system is a surprise. "This is not what we would expect from current models, which call for lower-mass interacting binary progenitor systems," Van Dyk said.

- Expectations on the identity of the progenitors of Type Ic supernovas have been a puzzle. Astronomers have known that the supernovas were deficient in hydrogen and helium, and initially proposed that some hefty stars shed this material in a strong wind (a stream of charged particles) before they exploded. When they didn't find the progenitors stars, which should have been extremely massive and bright, they suggested a second method to produce the exploding stars that involves a pair of close-orbiting, lower-mass binary stars. In this scenario, the heftier star is stripped of its hydrogen and helium by its companion. But the "stripped" star is still massive enough to eventually explode as a Type Ic supernova.

- "Disentangling these two scenarios for producing Type Ic supernovas impacts our understanding of stellar evolution and star formation, including how the masses of stars are distributed when they are born, and how many stars form in interacting binary systems," explained Ori Fox of the Space Telescope Science Institute (STScI) in Baltimore, Maryland, a member of Van Dyk's team. "And those are questions that not just astronomers studying supernovas want to know, but all astronomers are after."

- Type Ic supernovas are just one class of exploding star. They account for about 20 percent of massive stars that explode from the collapse of their cores.

- The teams caution that they won't be able to confirm the source's identity until the supernova fades in about two years. The astronomers hope to use either Hubble or the upcoming NASA James Webb Space Telescope to see whether the candidate progenitor star has disappeared or has significantly dimmed. They also will be able to separate the supernova's light from that of stars in its environment to calculate a more accurate measurement of the object's brightness and mass.

- SN 2017ein was discovered in May 2017 by Tenagra Observatories in Arizona. But it took the sharp resolution of Hubble to pinpoint the exact location of the possible source. Van Dyk's team imaged the young supernova in June 2017 with Hubble's Wide Field Camera 3. The astronomers used that image to pinpoint the candidate progenitor star nestled in one of the host galaxy's spiral arms in archival Hubble photos taken in December 2007 by the Wide Field Planetary Camera 2.

- Kilpatrick's group also observed the supernova in June 2017 in infrared images from one of the 10-meter telescopes at the W. M. Keck Observatory in Hawaii. The team then analyzed the same archival Hubble photos as Van Dyk's team to uncover the possible source.

- The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.

14 November 2018: The SPC (Science Program Committee) of ESA has confirmed the continued operations of ten scientific missions in the Agency's fleet up to 2022. After a comprehensive review of their scientific merits and technical status, the SPC has decided to extend the operation of the five missions led by ESA's Science Program: Cluster, Gaia, INTEGRAL, Mars Express, and XMM-Newton. The SPC also confirmed the Agency's contributions to the extended operations of Hinode, Hubble, IRIS, SOHO, and ExoMars TGO. 48)

- This includes the confirmation of operations for the 2019–2020 cycle for missions that had been given indicative extensions as part of the previous extension process, and indicative extensions for an additional two years, up to 2022.
Note: Every two years, all missions whose approved operations end within the following four years are subject to review by the advisory structure of the Science Directorate. Extensions are granted to missions that satisfy the established criteria for operational status and science return, subject to the level of financial resources available in the science program. These extensions are valid for the following four years, subject to a mid-term review and confirmation after two years.

- The decision was taken during the SPC meeting at ESA/ESAC (European Space Astronomy Center) near Madrid, Spain, on 14 November.

- ESA's science missions have unique capabilities and are prolific in their scientific output. Cluster, for example, is the only mission that, by varying the separation between its four spacecraft, allows multipoint measurements of the magnetosphere in different regions and at different scales, while Gaia is performing the most precise astrometric survey ever realized, enabling unprecedented studies of the distribution and motions of stars in the Milky Way and beyond.

- Many of the science missions are proving to be of great value to pursue investigations that were not foreseen at the time of their launch. Examples include the role of INTEGRAL and XMM-Newton in the follow-up of recent gravitational wave detections, paving the way for the future of multi-messenger astronomy, and the many discoveries of diverse exoplanets by Hubble.

- Collaboration between missions, including those led by partner agencies, is also of great importance. The interplay between solar missions like Hinode, IRIS and SOHO provides an extensive suite of complementary instruments to study our Sun; meanwhile, Mars Express and ExoMars TGO are at the forefront of the international fleet investigating the Red Planet.

- Another compelling factor to support the extension is the introduction of new modes of operation to accommodate the evolving needs of the scientific community, as well as new opportunities for scientists to get involved with the missions.

Table 1: Extended life for ESA's science missions 48)

• 08 November 2018: Blue compact dwarf galaxies take their name from the intensely blue star-forming regions that are often found within their cores. One such region can be seen embedded in ESO 338-4, which is populated with bright young stars voraciously consuming hydrogen. These massive stars are doomed to a short existence, as despite their vast supplies of hydrogen fuel. The nuclear reactions in the cores of these stars will burn through these supplies in only millions of years — a mere blink of an eye in astronomical terms. 49)

- The young blue stars nestled within a cloud of dust and gas in the center of this image are the result of a recent galaxy merger between a wandering galaxy and ESO 388-4. This galactic interaction disrupted the clouds of gas and dust surrounding ESO 338-4 and led to the rapid formation of a new population of stars.

Hubble_Auto3F

Figure 34: This captivating image from the NASA/ESA Hubble Space Telescope's Wide Field Camera 3 shows a lonely dwarf galaxy, a staggering 100 million light-years away from Earth. This image depicts the blue compact dwarf galaxy ESO 338-4, which can be found in the constellation of Corona Australis (the Southern Crown), image credit: ESA/Hubble & NASA

• 05 November 2018: On the first day of the 15th annual European Space Weather Week, this image from the NASA/ESA Hubble Space Telescope fittingly shows a striking occurrence of celestial weather in the outer reaches of the Solar System: an aurora on Uranus. 50)

- Auroras, also known as polar lights, are a relatively familiar type of space weather to Earth-based stargazers, but have also been spied on many other planets in the Solar System.

- Views of the Earth's Northern and Southern Lights show glowing sheets and rippling waves of bright light painting the sky in striking shades of green and even red, blue, and purple; these breath-taking scenes are created as streams of energetic charged particles hit the upper layers of Earth's atmosphere at altitudes of up to a few hundreds of kilometers, and interact with resident atoms and molecules of mostly oxygen and nitrogen. These emit photons at specific visible wavelengths or colors – green and red for oxygen, blue and purple for nitrogen – and fill the sky with an eerie auroral glow.

- Hubble has observed auroras on Uranus on various occasions: in 2011, when the telescope became the first to image the phenomenon from the vicinity of Earth, then again in 2012 and 2014, taking extra data beyond visible light.

- By pointing Hubble's ultraviolet eye on Uranus twice during the same month, from 1 to 5 and 22 to 24 November 2014, scientists were able to determine that the planet's glimmering auroras rotate along with the planet. The observations also helped to locate Uranus' magnetic poles, and allowed scientists to track two so-called interplanetary shocks that propagated through the Solar System. These shocks were triggered by two powerful bursts of material flung out by the Sun via the solar wind, an ongoing flow of charged particles constantly emanating from our star, and caused the most intense auroras ever seen on Uranus.

Hubble_Auto3E

Figure 35: This image, originally published in 2017, shows the auroras as wispy patches of white against the planet's azure blue disc, and combines optical and ultraviolet observations from Hubble with archive data from NASA's Voyager 2 probe. Voyager 2 was the first and only craft to visit the outermost planets in the Solar System; it flew past Uranus in January 1986, and past Neptune in August 1989. These icy planets have not been visited since. NASA and ESA have been studying a possible joint mission that would target the two ice giant planets in order to explore their intriguing role in our planetary system (image credit: ESA/Hubble & NASA, L. Lamy / Observatoire de Paris)

• 31 October 2018: The NASA/ESA Hubble Space Telescope has captured part of the wondrous Serpens Nebula, lit up by the star HBC 672. This young star casts a striking shadow – nicknamed the Bat Shadow – on the nebula behind it, revealing telltale signs of its otherwise invisible protoplanetary disc. 51)

- The Serpens Nebula, located in the tail of the Serpent (Serpens Cauda) about 1300 light-years away, is a reflection nebula that owes most of its sheen to the light emitted by stars like HBC 672 –  a young star nestled in its dusty folds. In this image the NASA/ESA Hubble Space Telescope has exposed two vast cone-like shadows emanating from HBC 672.

- These colossal shadows on the Serpens Nebula are cast by the protoplanetary disc surrounding HBC 672. By clinging tightly to the star the disc creates an imposing shadow, much larger than the disc – approximately 200 times the diameter of our own Solar System. The disc's shadow is similar to that produced by a cylindrical lamp shade. Light escapes from the top and bottom of the shade, but along its circumference, dark cones of shadow form.

- The disc itself is so small and far away from Earth that not even Hubble can detect it encircling its host star. However, the shadow feature – nicknamed the Bat Shadow – reveals details of the disc's shape and nature. The presence of a shadow implies that the disc is being viewed nearly edge-on.

- Whilst most of the shadow is completely opaque, scientists can look for color differences along its edges, where some light gets through. Using the shape and color of the shadow, they can determine the size and composition of dust grains in the disc.

- The whole Serpens Nebula, of which this image shows only a tiny part, could host more of these shadow projections. The nebula envelops hundreds of young stars, many of which could also be in the process of forming planets in a protoplanetary disc.

- Although shadow-casting discs are common around young stars, the combination of an edge-on viewing angle and the surrounding nebula is rare. However, in an unlikely coincidence, a similar looking shadow phenomenon can be seen emanating from another young star, in the upper left of the image.

- These precious insights into protoplanetary discs around young stars allow astronomers to study our own past. The planetary system we live in once emerged from a similar protoplanetary disc when the Sun was only a few million years old. By studying these distant discs we get to uncover the formation and evolution of our own cosmic home.

Hubble_Auto3D

Figure 36: This image, taken with the NASA/ESA Hubble Space Telescope shows the Serpens Nebula, a stellar nursery about 1300 light-years away. Within the nebula, in the upper right of the image, a shadow is created by the protoplanetary disc surrounding the star HBC 672. While the disc of debris is too tiny to be seen even by Hubble, its shadow is projected upon the cloud in which it was born. In this view, the feature – nicknamed the Bat Shadow – spans approximately 200 times the diameter of our own Solar System. - A similar looking shadow phenomenon can be seen emanating from another young star, in the upper left of the image (image credit: NASA, ESA, and STScI, CC BY 4.0)

NASA's Hubble Space Telescope returned to normal operations late Friday, Oct. 26, and completed its first science observations on Saturday, 27 October 2018 at 2:10 AM EDT. The observations were of the distant, star-forming galaxy DSF2237B-1-IR and were taken in infrared wavelengths with the WFC3 (Wide Field Camera 3) instrument. The return to conducting science comes after successfully recovering a backup gyroscope, that had replaced a failed gyro three weeks earlier. 52)

- One of Hubble's gyros failed on 5 October, and the spacecraft's operations team activated a backup gyro the next day. However, the backup incorrectly returned rotation rates that were far in excess of the actual rates.

- Last week the operations team commanded Hubble to perform numerous maneuvers, or turns, and switched the gyro between different operational modes, which successfully cleared what was believed to be blockage between components inside the gyro that produced the excessively high rate values. Next, the team monitored and tested the gyro with additional maneuvers to make sure that the gyro was stable. The team then installed additional safeguards on the spacecraft in case the excessive rate values return, although this is not anticipated.

- On 26 October, the team began the process to restore the scientific instruments to standard operating status. Hubble successfully completed maneuvers to get on target for the first science observations, and the telescope collected its first science data since 5 October.

- Hubble is now back in its normal science operations mode with three fully functional gyros. Originally required to last 15 years, Hubble has now been at the forefront of scientific discovery for more than 28 years. The team expects the telescope will continue to yield amazing discoveries well into the next decade, enabling it to work alongside the James Webb Space Telescope.

• 26 October 2018: The constellation of Cassiopeia, named after a vain queen in Greek mythology, forms the easily recognizable "W" shape in the night sky. The central point of the W is marked by a dramatic star named Gamma Cassiopeiae. 53) 54) 55)

- The remarkable Gamma Cassiopeiae is a blue-white subgiant variable star that is surrounded by a gaseous disc. This star is 19 times more massive and 65,000 times brighter than our Sun. It also rotates at the incredible speed of 1.6 million km/hour – more than 200 times faster than our parent star. This frenzied rotation gives it a squashed appearance. The fast rotation causes eruptions of mass from the star into a surrounding disk. This mass loss is related to the observed brightness variations.

- The radiation of Gamma Cassiopeiae is so powerful that it even affects IC 63, sometimes nicknamed the Ghost Nebula, that lies several light years away from the star. IC 63 is visible in this image taken by the NASA/ESA Hubble Space Telescope.

- The colors in the eerie nebula showcase how the nebula is affected by the powerful radiation from the distant star. The hydrogen within IC 63 is being bombarded with ultraviolet radiation from Gamma Cassiopeiae, causing its electrons to gain energy which they later release as hydrogen-alpha radiation – visible in red in this image.

- This hydrogen-alpha radiation makes IC 63 an emission nebula, but we also see blue light in this image. This is light from Gamma Cassiopeiae that has been reflected by dust particles in the nebula, meaning that IC 63 is also a reflection nebula.

- This colorful and ghostly nebula is slowly dissipating under the influence of ultraviolet radiation from Gamma Cassiopeiae. However, IC 63 is not the only object under the influence of the mighty star. It is part of a much larger nebulous region surrounding Gamma Cassiopeiae that measures approximately two degrees on the sky – roughly four times as wide as the full Moon.

- The region is best seen from the Northern Hemisphere during autumn and winter. Though it is high in the sky and visible all year round from Europe, it is very dim, so observing it requires a fairly large telescope and dark skies.

Hubble_Auto3C

Figure 37: IC 63, the Ghost Nebula. From above Earth's atmosphere, Hubble gives us a view that we cannot hope to see with our eyes. This photo is possibly the most detailed image that has ever been taken of IC 63, and it beautifully showcases Hubble's capabilities (image credit: ESA/Hubble, NASA, CC BY 4.0)

• 23 October 2018: An international team of astronomers have discovered two stars in a binary pair that complete an orbit around each other in a little over three hours, residing in the planetary nebula M3-1. Remarkably, the stars could drive a nova explosion, an entirely unexpected event based on our current understanding of binary star evolution. The team, led by David Jones of the IAC (Instituto Astrofisica de Canarias) and the Universidad de La Laguna, report their findings in Monthly Notices of the Royal Astronomical Society: Letters. 56) 57)

- Planetary nebulae are the glowing shells of gas and dust formed from the outer layers of stars like our own Sun, which they throw off during the final stages of their evolution. In many cases, interaction with a nearby companion star plays an important role in the ejection of this material and the formation of the elaborate structures seen in the resulting planetary nebulae.

- The planetary nebula M3-1 is located in the constellation of Canis Major, at a distance of roughly 14,000 light years. M3-1 was a firm candidate to host a binary central star, as its structure with prominent jets and filaments is typical of these binary star interactions.

- Using the telescopes of the European Southern Observatory (ESO) in Chile, Jones's team looked at M3-1 over a period of several years. In the process they discovered and studied the binary stars in the center of the nebula.

- "We knew M3-1 had to host a binary star, so we set about acquiring the observations required to prove this and to relate the properties of the nebula with the evolution of the star or stars that formed it," says Brent Miszalski, researcher at the Southern African Large Telescope, and co-author of the study.

- The two stars are so close together that they cannot be resolved from the ground, so instead the presence of the second star is inferred from the variation of their observed combined brightness — most obviously by periodic eclipses of one star by the other which produce marked drops in the brightness.

Hubble_Auto3B

Figure 38: An image obtained with the Hubble Space Telescope of the planetary nebula M3-1, the central star of which is actually a binary system with one of the shortest orbital periods known (image credit: David Jones - IAC)

- "When we began the observations, it was immediately clear that the system was a binary" explains Henri Boffin, researcher at the European Southern Observatory in Germany. "We saw that the apparently single star at the center of the nebula was rapidly changing in brightness, and we knew that this must be due to the presence of a companion star."

- The team discovered that the central star of the planetary nebula M3-1 has one of the shortest orbital period binary central stars known to date, at just over three hours. The ESO observations also show that the two stars — most likely a white dwarf with a low-mass main sequence companion — are almost touching.

- As a result, the pair are likely to undergo a so-called nova eruption, the result of the transfer of material from one star to the other. When this reaches a critical mass, a violent thermonuclear explosion takes place and the system temporarily increases in brightness by up to a million times.

- "After the various observing campaigns in Chile, we had enough data to begin to understand the properties of the two stars — their masses, temperatures and radii" says Paulina Sowicka, a PhD student at the Nicolas Copernicus Astronomical Center in Poland. "It was a real surprise that the two stars were so close together and so large that they were almost touching one another. A nova explosion could take place in just a few thousand years from now."

- Theory suggests that binary stars should be well separated after the formation of a planetary nebula. It should then take a long time before they begin to interact again and events such as novae become possible.

- In 2007, astronomers observed a different nova explosion, known as Nova Vul 2007, inside another planetary nebula. Jones comments: "The 2007 event was particularly difficult to explain. By the time the two stars are close enough for a nova, the material in the planetary nebula should have expanded and dissipated so much that it's no longer visible."

- The new event adds to the conundrum, adds Jones: "In the central stars of M3-1, we've found another candidate for a similar nova eruption in the relatively near future."

- The team now hope to carry out further study of the nebula and others like it, helping to shed light on the physical processes and origins of novae and supernovae, some of the most spectacular and violent phenomena in the Universe.

• 22 October 2018: NASA took great strides last week to press into service a Hubble Space Telescope backup gyroscope (gyro) that was incorrectly returning extremely high rotation rates. The backup gyro was turned on after the spacecraft entered safe mode due to a failed gyro on Friday, 5 October. The rotation rates produced by the backup gyro have since reduced and are now within an expected range. Additional tests will be performed to ensure Hubble can return to science operations with this gyro. 58)

- A gyro is a device that measures the speed at which the spacecraft is turning, and is needed to help Hubble turn and lock on to new targets.

- A wheel inside the gyro spins at a constant rate of 19,200 revolutions per minute. This wheel is mounted in a sealed cylinder, called a float, which is suspended in a thick fluid. Electricity is carried to the motor by thin wires, approximately the size of a human hair, that are immersed in the fluid. Electronics within the gyro detect very small movements of the axis of the wheel and communicate this information to Hubble's central computer. These gyros have two modes — high and low. High mode is a coarse mode used to measure large rotation rates when the spacecraft turns across the sky from one target to the next. Low mode is a precision mode used to measure finer rotations when the spacecraft locks onto a target and needs to stay very still.

- In an attempt to correct the erroneously high rates produced by the backup gyro, the Hubble operations team executed a running restart of the gyro on 16 October. This procedure turned the gyro off for one second, and then restarted it before the wheel spun down. The intention was to clear any faults that may have occurred during startup on 6 October, after the gyro had been off for more than 7.5 years. However, the resulting data showed no improvement in the gyro's performance.

- On 18 October, the Hubble operations team commanded a series of spacecraft maneuvers, or turns, in opposite directions to attempt to clear any blockage that may have caused the float to be off-center and produce the exceedingly high rates. During each maneuver, the gyro was switched from high mode to low mode to dislodge any blockage that may have accumulated around the float.

- Following the 18 October maneuvers, the team noticed a significant reduction in the high rates, allowing rates to be measured in low mode for brief periods of time. On 19 October, the operations team commanded Hubble to perform additional maneuvers and gyro mode switches, which appear to have cleared the issue. Gyro rates now look normal in both high and low mode.

- Hubble then executed additional maneuvers to make sure that the gyro remained stable within operational limits as the spacecraft moved. The team saw no problems and continued to observe the gyro through the weekend to ensure that it remained stable.

- The Hubble operations team plans to execute a series of tests to evaluate the performance of the gyro under conditions similar to those encountered during routine science observations, including moving to targets, locking on to a target, and performing precision pointing. After these engineering tests have been completed, Hubble is expected to soon return to normal science operations.

• 19 October 2018: Discovered in November 1834 by British astronomer John Herschel, NGC 1898 has been scrutinized numerous times by the NASA/ESA Hubble Space Telescope. Today we know that globular clusters are some of the oldest known objects in the universe and that they are relics of the first epochs of galaxy formation. While we already have a pretty good picture on the globular clusters of the Milky Way — still with many unanswered questions — our studies on globular clusters in nearby dwarf galaxies just started. The observations of NGC 1898 will help to determine whether their properties are similar to the ones found in the Milky Way, or if they have different features, due to being in a different cosmic environment. 59)

- The image of Figure 39 was taken by Hubble's Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3).

Hubble_Auto3A

Figure 39: This glittering ball of stars is the globular cluster NGC 1898, which lies toward the center of the Large Magellanic Cloud — one of our closest cosmic neighbors. The Large Magellanic Cloud is a dwarf galaxy that hosts an extremely rich population of star clusters, making it an ideal laboratory for investigating star formation (image credit: ESA/Hubble & NASA)

• 18 October 2018: New observations by two Arizona State University astronomers using the Hubble Space Telescope have caught a red dwarf star in a violent outburst, or superflare. The blast of radiation was more powerful than any such outburst ever detected from the Sun, and would likely affect the habitability of any planets orbiting it. 60)

- Moreover, the astronomers say, such superflares appear more common in younger red dwarfs, which erupt 100 to 1000 times more powerfully than they will when they age.

- The superflare was detected as part of a Hubble Space Telescope observing program dubbed HAZMAT (HAbitable Zones and M dwarf Activity across Time). The program surveys red dwarfs (also known as M dwarfs) at three different ages—young, intermediate, and old—and observes them in ultraviolet light, where they show the most activity.

- "Red dwarf stars are the smallest, most common, and longest-lived stars in the galaxy," says Evgenya Shkolnik, an assistant professor in ASU's School of Earth and Space Exploration and the HAZMAT program's principal investigator. "In addition, we think that most red dwarf stars have systems of planets orbiting them."

- The Hubble telescope's orbit above Earth's atmosphere gives it clear, unhindered views at ultraviolet wavelengths. The flares are believed to be powered by intense magnetic fields that get tangled by the roiling motions of the stellar atmosphere. When the tangling gets too intense, the fields break and reconnect, unleashing tremendous amounts of energy.

- ASU postdoctoral researcher Parke Loyd is the first author on the paper (to be published in the Astrophysical Journal) that reports on the stellar outbursts. 61)

- He says, "When I realized the sheer amount of light the superflare emitted, I sat looking at my computer screen for quite some time just thinking, 'Whoa.'"

- Loyd notes, "Gathering data on young red dwarfs has been especially important because we suspected these stars would be quite unruly in their youth, which is the first hundred million years or so after they form." - He adds, "Most of the potentially-habitable planets in our galaxy have had to withstand intense flares like the ones we observed at some point in their life. That's a sobering thought."

Hubble_Auto39

Figure 40: Violent outbursts of seething gas from young red dwarfs may make conditions uninhabitable on fledgling planets. In this artist's rendering, an active, young red dwarf (right) is stripping the atmosphere from an orbiting planet (left). ASU astronomers have found that flares from the youngest red dwarfs they surveyed — approximately 40 million years old — are 100 to 1000 times more energetic than when the stars are older. They also detected one of the most intense stellar flares ever observed in ultraviolet light — more energetic than the most powerful flare ever recorded from our Sun [image credit: NASA, ESA, and D. Player (STScI)]

Rough environment for planets

- About three-quarters of the stars in our Milky Way galaxy are red dwarfs. Most of the galaxy's "habitable-zone" planets—planets orbiting their stars at a distance where temperatures are moderate enough for liquid water to exist on their surface—orbit red dwarfs. In fact, the nearest star to our Sun, a red dwarf named Proxima Centauri, has an Earth-size planet in its habitable zone.

- However, red dwarfs—especially young red dwarfs—are active stars, producing flares that could blast out so much energy that it disrupts and possibly strips off the atmospheres of these fledgling planets.

- "The goal of the HAZMAT program is to understand the habitability of planets around low-mass stars," explains Shkolnik. "These low-mass stars are critically important in understanding planetary atmospheres." Ultraviolet radiation can modify the chemistry in a planet's atmosphere, or potentially remove that atmosphere.

Hubble_Auto38

Figure 41: Observations with the Hubble Space Telescope discovered a superflare (red line) that caused a red dwarf star's brightness in the far ultraviolet to abruptly increase by a factor of nearly 200 (image credit: P. Loyd/ASU)

- The observations reported in the Astrophysical Journal examined the flare frequency of 12 young (40 million year old) red dwarfs and represent just the first part of the HAZMAT program. These stars show that young low-mass stars flare much more frequently and more energetically than old stars and middle-age stars like our Sun—as evidenced by the superflare.

- "With the Sun, we have a hundred years of good observations," says Loyd. "And in that time, we've seen one, maybe two, flares that have an energy approaching that of the superflare."

- However, he says, "In a little less than a day's worth of Hubble observations of these young stars, we caught the superflare. This means that we're looking at superflares happening every day or even a few times a day."

- Could superflares of such frequency and intensity bathe young planets in so much ultraviolet radiation that they forever rule out any chance of habitability?

- According to Loyd, "Flares like we observed have the capacity to strip away the atmosphere from a planet. But that doesn't necessarily mean doom and gloom for life on the planet. It just might be different life than we imagine. Or there might be other processes that could replenish the atmosphere of the planet. It's certainly a harsh environment, but I would hesitate to call it a sterile environment."

- The next part of the HAZMAT study will be to study intermediate-age red dwarfs that are 650 million years old. Then the oldest red dwarfs will be analyzed and compared with the young and intermediate stars to understand the evolution of the high-energy-radiation environment for planets around these low-mass stars.

- Red dwarfs, which are estimated to burn as long as a trillion years, have a vast stretch of time available to eventually host evolving, habitable planets.

- "They just have many more opportunities for life to evolve, given their longevity," says Shkolnik. "I don't think we know for sure one way or another about whether planets orbiting red dwarfs are habitable just yet, but I think time will tell."

- She says, "It's great that we're living in a time when we have the technology to actually answer these kinds of questions, rather than just philosophize about them."

• 12 October 2018: This image from the NASA/ESA Hubble Space Telescope (Figure 42) reveals a spiral galaxy named Messier 95 (also known as M95 or NGC 3351). Located about 35 million light-years away in the constellation of Leo (The Lion), this swirling spiral was discovered by astronomer Pierre Méchain in 1781, and cataloged by French astronomer Charles Messier just four days later. Messier was primarily a comet hunter, and was often left frustrated by objects in the sky that resembled comets but turned out not to be. To help other astronomers avoid confusing these objects in the future, he created his famous catalog of Messier objects. 62)

- Most definitely not a comet, Messier 95 is actually a barred spiral galaxy. The galaxy has a bar cutting through its center, surrounded by an inner ring currently forming new stars. Also our own Milky Way is a barred spiral.

- As well as hosting this stellar nursery, Messier 95 is a known host of the dramatic and explosive final stages in the lives of massive stars: supernovae. In March 2016 a spectacular supernova named SN 2012aw was observed in the outer regions of one of Messier 95's spiral arms. Once the light from the supernova had faded, astronomers were able to compare observations of the region before and after the explosion to find out which star had "disappeared" — the progenitor star. In this case, the star was an especially huge red supergiant up to 26 times more massive than the Sun.

Hubble_Auto37

Figure 42: This Hubble image reveals a detailed view of part of the spiral galaxy Messier 95 (image credit: ESA/Hubble & NASA; CC BY 4.0)

• 08 October 2018: NASA is working to resume science operations of the Hubble Space Telescope after the spacecraft entered safe mode on Friday, 5 October , shortly after 6:00 p.m. EDT. Hubble's instruments still are fully operational and are expected to produce excellent science for years to come. 63)

- Hubble entered safe mode after one of the three gyroscopes, actively being used to point and steady the telescope, failed. Safe mode puts the telescope into a stable configuration until ground control can correct the issue and return the mission to normal operation.

- Built with multiple redundancies, Hubble had six new gyros installed during Servicing Mission-4 in 2009. Hubble usually uses three gyros at a time for maximum efficiency, but can continue to make scientific observations with just one.

- The gyro that failed had been exhibiting end-of-life behavior for approximately a year, and its failure was not unexpected; two other gyros of the same type had already failed. The remaining three gyros available for use are technically enhanced and therefore expected to have significantly longer operational lives.

- Two of those enhanced gyros are currently running. Upon powering on the third enhanced gyro that had been held in reserve, analysis of spacecraft telemetry indicated that it was not performing at the level required for operations. As a result, Hubble remains in safe mode. Staff at NASA's Goddard Space Flight Center and the Space Telescope Science Institute are currently performing analyses and tests to determine what options are available to recover the gyro to operational performance.

- Science operations with Hubble have been suspended while NASA investigates the anomaly. An Anomaly Review Board, including experts from the Hubble team and industry familiar with the design and performance of this type of gyro, is being formed to investigate this issue and develop the recovery plan. If the outcome of this investigation results in recovery of the malfunctioning gyro, Hubble will resume science operations in its standard three-gyro configuration.

- If the outcome indicates that the gyro is not usable, Hubble will resume science operations in an already defined "reduced-gyro" mode that uses only one gyro. While reduced-gyro mode offers less sky coverage at any particular time, there is relatively limited impact on the overall scientific capabilities.