Minimize Landsat-8

Landsat-8 / LDCM (Landsat Data Continuity Mission)

Spacecraft     Launch    Mission Status     Sensor Complement    Ground Segment    References

The Landsat spacecraft series of NASA represents the longest continuous Earth imaging program in history, starting with the launch of Landsat-1 in 1972 through Landsat-7 with the ETM+ imager (launch April 15, 1999). With the evolution of the program has come an increased emphasis on the scientific utility of the data accompanied by more stringent requirements for instrument and data characterization, calibration and validation. This trend continues with LDCM, the next mission in the Landsat sequence. The enhancements of the Landsat-7 system, e.g., more on-board calibration hardware and an image assessment system and personnel, have been retained and improved, where required, for LDCM. Aspects of the calibration requirements are spread throughout the mission, including the instrument and its characterization, the spacecraft, operations and the ground system. 1) 2)

The following are the major mission objectives: 3)

• Collect and archive moderate-resolution, reflective multispectral image data affording seasonal coverage of the global land mass for a period of no less than five years.

• Collect and archive moderate-resolution, thermal multispectral image data affording seasonal coverage of the global land mass for a period of no less than three years.

• Ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions, in terms of acquisition geometry, calibration, coverage characteristics, spectral and spatial characteristics, output product quality, and data availability to permit studies of land cover and land use change over multi-decadal periods.

• Distribute standard LDCM data products to users on a nondiscriminatory basis and at no cost to the users.

Background: In 2002, the Landsat program had its 30th anniversary of providing satellite remote sensing information to the world; indeed a record history of service with the longest continuous spaceborne optical medium-resolution imaging dataset available anywhere. The imagery has been and is being used for a multitude of land surface monitoring tasks covering a broad spectrum of resource management and global change issues and applications.

In 1992 the US Congress noted that Landsat commercialization had not worked and brought Landsat back into the government resulting in the launches of Landsat 6 (which failed on launch) and Landsat 7. However there was still much conflict within the government over how to continue the program.

In view of the outstanding value of the data to the user community as a whole, NASA and USGS (United States Geological Survey) were working together (planning, rule definition, forum of ideas and discussion among all parties involved, coordination) on the next generation of the Landsat series satellites, referred to as LDCM (Landsat Data Continuity Mission). The overall timeline foresaw a formulation phase until early 2003, followed by an implementation phase until 2006. The goal was to acquire the first LDCM imagery in 2007 - to ensure the continuity of the Landsat dataset [185 km swath width, 15 m resolution (Pan) and a new set of spectral bands]. 4) 5) 6) 7) 8) 9) 10) 11)

The LDCM project suffered some setbacks on its way to realization resulting in considerable delays:

• An initial major programmatic objective of LDCM was to explore the use of imagery purchases from a commercial satellite system in the next phase of the Landsat program. In March 2002, NASA awarded two study contracts to: a) Resource21 LLC. of Englewood, CO, and b) DigitalGlobe Inc. of Longmont, CO. The aim was to formulate a proper requirements set and an implementation scenario (options) for LDCM. NASA envisioned a PPP (Public Private Partnership) program in which the satellite system was going to be owned and operated commercially. A contract was to be awarded in the spring of 2003. - However, it turned out that DigitalGlobe lost interest and dropped out of the race. And the bid of Resource21 turned out to be too high for NASA to be considered.

• In 2004, NASA was directed by the OSTP (Office of Science and Technology Policy) to fly a Landsat instrument on the new NPOESS satellite series of NOAA.

• In Dec. 2005, a memorandum with the tittle “Landsat Data Continuity Strategy Adjustment” was released by the OSTP which directed NASA to acquire a free-flyer spacecraft for LDCM - thus, superseding the previous direction to fly a Landsat sensor on NPOESS. 12)

However, the matter was not resolved until 2007 when it was determined that NASA would procure the next mission, the LDCM, and that the USGS would operate it as well as determine all future Earth observation missions. This decision means that Earth observation has found a home in an operating agency whose mission is directly concerned with the mapping and analysis of the Earth’s surface allowing NASA to focus on advancing space technologies and the future of man in space.

Overall science objectives of the LDCM imager observations are:

• To permit change detection analysis and to ensure consistency of the LDCM data with the Landsat series data

• To provide global coverage of the Earth's land surfaces on a seasonal basis

• To acquire imagery at spatial, spectral and temporal resolutions sufficient to characterize and understand the causes and consequences of change

• To make the data available to the user community.

The procurement approach for the LDCM project represents a departure from a conventional NASA mission. NASA traditionally specifies the design of the spacecraft, instruments, and ground systems acquiring data for its Earth science missions. For LDCM, NASA and USGS (the science and technology agency of the Department of the Interior, DOI) have instead specified the content, quantity, and characteristics of data to be delivered.

LS82019_Auto76

Figure 1: History of the Landsat program (image credit: NASA) 13)

Legend to Figure 1: The small white arrow within the Landsat-7 arrow on this timeline indicates the collection of data without the Scan Line Corrector.

“The Landsat series of satellites is a cornerstone of our Earth observing capability. The world relies on Landsat data to detect and measure land cover/land use change, the health of ecosystems, and water availability,” NASA Administrator Charles Bolden told the Subcommittee on Space Committee on Science, Space and Technology U.S House of Representatives in April 2015.

“With a launch in 2023, Landsat-9 would propel the program past 50 years of collecting global land cover data,” said Jeffrey Masek, Landsat-9 Project Scientist at Goddard. “That’s the hallmark of Landsat: the longer the satellites view the Earth, the more phenomena you can observe and understand. We see changing areas of irrigated agriculture worldwide, systemic conversion of forest to pasture – activities where either human pressures or natural environmental pressures are causing the shifts in land use over decades.”

Landsat-8 successfully launched on Feb. 11, 2013 and the Landsat data archive continues to expand. — Landsat-9 was announced on April 16, 2015. The launch is planned for 2023. 14)

Dec. 31, 2015: NASA has awarded a sole source letter contract to BACT (Ball Aerospace & Technologies Corporation), Boulder, Colo., to build the OLI-2 (Operational Land Imager-2) instrument for the Landsat-9 project. 15)




Spacecraft:

In April 2008, NASA selected GDAIS (General Dynamics Advanced Information Systems), Inc., Gilbert, AZ, to build the LDCM spacecraft on a fixed price contract. An option provides for the inclusion of a second payload instrument. LDCM is a NASA/USGS partnership mission with the following responsibilities: 16) 17) 18) 19)

• NASA is providing the LDCM spacecraft, the instruments, the launch vehicle, and the mission operations element of the ground system. NASA will also manage the space segment early on-orbit evaluation phase -from launch to acceptance.

• USGS is providing the mission operations center and ground processing systems (including archive and data networks), as well as the flight operations team. USGS will also co-chair and fund the Landsat science team.

In April 2010, OSC (Orbital Sciences Corporation) of Dulles VA acquired GDAIS. Hence, OSC will continue to manufacture and integrate the LDCM program as outlined by GDAIS. Already in Dec. 2009, GDAIS successfully completed the CDR (Critical Design Review) of LDCM for NASA/GSFC. 20) 21)

LS82019_Auto75

Figure 2: Artist's rendition of the LDCM spacecraft in orbit (image credit: NASA, OSC)

The LDCM spacecraft uses a nadir-pointing three-axis stabilized platform (zero momentum biased), a modular architecture referred to as SA-200HP. The SA-200HP (High Performance) bus is of DS1 (Deep Space 1) and Coriolis mission heritage. The spacecraft consists of an aluminum frame and panel prime structure.

The spacecraft is 3-axis stabilized (zero momentum biased). The ADCS (Attitude Determination and Control Subsystem) employs six reaction wheels, three torque rods and thrusters as actuators. Attitude is sensed with three precision star trackers (2 of 3 star trackers are active), a redundant SIRU (Scalable Inertial Reference Unit), twelve coarse sun sensors, redundant GPS receivers (Viceroy), and two TAMs (Three Axis Magnetometers).

- Attitude control error (3σ): ≤ 30 µrad

- Attitude knowledge error (3σ): ≤ 46 µrad

- Attitude knowledge stability (3σ): ≤ 0.12 µrad in 2.5 seconds; ≤ 1.45 µrad in 30 seconds

- Slew time: 180º any axis: ≤ 14 minutes, including settling; 15º roll: ≤ 4.5 minutes, including settling.

Key aspects of the satellite performance related to imager calibration and validation are pointing, stability and maneuverability. Pointing and stability affect geometric performance; maneuverability allows data acquisitions for calibration using the sun, moon and stars. For LDCM, an off nadir acquisition capability is included (up to 1 path off nadir) for imaging high priority targets (event monitoring capability).
Also, the spacecraft pointing capability will allow the calibration of the OLI using the sun (roughly weekly), the moon (monthly), stars (during commissioning) and the Earth (at 90° from normal orientation, a.k.a., side slither) quarterly. The solar calibration will be used for OLI absolute and relative calibration, the moon for trending the stability of the OLI response, the stars will be used for Line of Sight determination and the side slither will be an alternate OLI and relative gain determination methodology. 22) 23)

C&DH (Command & Data Handling) subsystem: The C&DH subsystem uses a standard cPCI backplane RAD750 CPU. The MIL-STD-1553B data bus is used for onboard ADCS, C&DH functions and instrument communications. The SSR (Solid State Recorder) provides a storage capacity of 4 Tbit @ BOL and 3.1 Tbit @ EOL.

The C&DH subsystem provides the mission data interfaces between instruments, the SSR, and the X-band transmitter. The C&DH subsystem consists of an IEM (Integrated Electronics Module), a PIE (Payload Interface Electronics), the SSR, and two OCXO (Oven Controlled Crystal Oscillators).

LS82019_Auto74

Figure 3: Photo of the EM SSR (Solid State Recorder), image credit: NASA

LS82019_Auto73

Figure 4: Block diagram of the C&DH subsystem (image credit: NASA, USGS, Ref. 107)

- The IEM subsystem provides the command and data handling function for the observatory, including mission data management between the PIE and SSR using FSW on the Rad750 processor. The IEM is block redundant with cross strapped interfaces for command and telemetry management, attitude control, SOH (State of Health) data and ancillary data processing, and for controlling image collection and file downlinks to the ground.

- The SSR subsystem provides for mission data and spacecraft SOH storage during all mission operations. The OCXO provides a stable, accurate time base for ADCS fine pointing.

- The C&DH accepts encrypted ground commands for immediate execution or for storage in the FSW file system using the relative time and absolute time command sequences (RTS, ATS respectfully). The commanding interface is connected to the uplink of each S-band transceiver, providing for cross-strapped redundancy to the C&DH. All commands are verified onboard prior to execution. Real-time commands are executed upon reception, while stored commands are placed in the FSW file system and executed under control of the FSW. Command counters and execution history are maintained by the C&DH FSW and reported in SOH telemetry.

- The IEM provides the command and housekeeping telemetry interfaces between the payload instruments and the ADCS components using a MIL-STD-1553B serial data bus and discrete control and monitoring interfaces. The C&DH provides the command and housekeeping interfaces between the CCU (Charge Control Unit), LCU (Load Control Unit) , and the PIE boxes.

- The PIE is the one of the key electrical system interfaces and mission data processing systems between the instruments, the spacecraft C&DH, SSR, and RF communications to the ground. The PIE contains the PIB (Payload Interface Boards ) for OLI (PIB-O) and TIRS (PIB-T).

Each PIB contains an assortment of specialized FPGAs (Field Programmable Gate Arrays) and ASICs, and each accepts instrument image data across the HSSDB for C&DH processing. A RS-485 communication bus collects SOH and ACS ancillary data for interleaving with the image data.

LS82019_Auto72

Figure 5: Block diagram of PIB (image credit: USGS, NASA)

- Data compression: Only the OLI data, sent through the PIB-O interface, implements lossless compression, by utilizing a pre-processor and entropy encoder in the USES ASIC. The compression can be enabled or bypassed on an image-by-image basis. When compression is enabled the first image line of each 1 GB file is uncompressed to provide a reference line to start that file. A reference line is generated every 1,024 lines (about every 4 seconds) to support real-time ground contacts to begin receiving data in the middle of a file and decompressing the image with the reception of a reference line.

- XIB (X-band Interface Board): The XIB is the C&DH interface between the PIE, SSR, and X-band transmitter, with the functional data path shown in Figure 6.

The XIB receives real-time data from the PIE PIB-O and PIB-T and receives stored data from the SSR via the 2 playback ports. The XIB sends mission data to the X-band transmitter via a parallel LVDS interface. The XIB receives a clock from the X-band transmitter to determine the data transfer rates between the XIB and the transmitter to maintain a 384 Mbit/s downlink. The XIB receives OLI realtime data from the PIB-O board, and TIRS real-time data from the PIB-T board across the backplane. The SSR data from the PIB-O and PIB-T interfaces are multiplexed and sent to the X-Band transmitter through parallel LVDS byte-wide interfaces.

LS82019_Auto71

Figure 6: X-band mission data flow (image credit: USGS, NASA)

- SSR (Solid Ste Recorder): The SSR is designed with radiation hard ASIC controllers, and up-screened commercial grade 4GB SDRAM (Synchronous Dynamic Random Access Memory) memory devices. Protection against on-orbit radiation induced errors is provided by a Reed-Solomon EDAC (Error Detection and Correction) algorithm. The SSR provides the primary means for storing all image, ancillary, and state of health data using a file management architecture. Manufactured in a single mechanical chassis, containing a total of 14 memory boards, the system provides fully redundant sides and interfaces to the spacecraft C&DH.

The spacecraft FSW (Flight Software) plays an integral role in the management of the file directory system for recording and file playback. FSW creates file attributes for identifier, size, priority, protection based upon instructions from the ground defining the length of imaging in the interval request, and its associated priority. FSW also maintains the file directory, and creates the ordered lists for autonomous playback based upon image priority. FSW automatically updates and maintains the spacecraft directory while recording or performing playback, and it periodically updates the SSR FSW directory when no recording is occurring to synchronize the two directories (Ref. 107).

TCS (Thermal Control Subsystem): The TCS uses standard Kapton etched-foil strip heaters. In general, a passive, cold-biased system is used for the spacecraft. Multi-layer insulation on spacecraft and payload as required. A deep space view is provided for the instrument radiators.

EPS (Electric Power Subsystem): The EPS consists of a single deployable solar array with single-axis articulation capability and with a stepping gimbal. Triple-junction solar cells are being used providing a power of 4300 W @ EOL. The NiH2 battery has a capacity of 125 Ah. Use of unregulated 22-36 V power bus.

The onboard propulsion subsystem provides a total velocity change of ΔV = 334 m/s using eight 22 N thrusters for insertion error correction, altitude adjustments, attitude recovery, EOL disposal, and other operational maintenance as necessary.

The spacecraft has a launch mass of 2780 kg (1512 kg dry mass). The mission design life is 5 years; the onboard consumable supply (386 kg of hydrazine) will last for 10 years of operations.

Spacecraft platform

SA-200HP (High Performance) bus

Spacecraft mass

Launch mass of 2780 kg; dry mass of 1512 kg

Spacecraft design life

5 years; the onboard consumable supply (386 kg of hydrazine) will last for 10 years of operations

EPS (Electric Power Subsystem)

- Power: 4.3 kW @ EOL (End of Life)
- Single deployable solar array with single-axis articulation capability
- Triple-junction solar cells
- NiH2 battery with 125 Ah capacity
- Unregulated 22 V - 36 V power bus
- Two power distribution boxes

ADCS (Attitude Determination &
Control Subsystem)

- Actuation: 6 reaction wheels and 3 torque rods
- Attitude is sensed with 3 precision star trackers, a redundant SIRU (Scalable Inertial Reference Unit),
12 coarse sun sensors, redundant GPS receivers (Viceroy), and 2 TAMs (Three Axis Magnetometers)
- Attitude control error (3σ): ≤ 30 µrad
- Attitude knowledge error (3σ): ≤ 29 µrad
- Attitude knowledge stability (3σ): ≤ 0.12 µrad in 2.5 seconds
- Attitude jitter: ≤ 0.28 µrad, 0.1-1.0 Hz
- Slew time, 180º pitch: ≤ 14 minutes, inclusive settling
- Slew time, 15º roll: ≤ 4.5 minutes, inclusive settling

C&DH (Command & Data Handling)

- Standard cPCI backplane RAD750 CPU
- MIL-STD-1553B data bus
- Solid state recorder provides a storage capacity of 4 TB @ BOL and 3.1 TB @ EOL

Propulsion subsystem

- Total velocity change of ΔV = 334 m/s using eight 22 N thrusters
- Hydrazine blow-down propulsion module

Table 1: Overview of spacecraft parameters

LS82019_Auto70

Figure 7: Two views of the LDCM spacecraft (without solar arrays) and major components (image credit: NASA, USGS)

RF communications: Earth coverage antennas are being used for all data links. The X-band downlink uses lossless compression and spectral filtering. The payload data rate is 440 Mbit/s. The X-band RF system consists of the X-band transmitter, TWTA (Travelling Wave Tube Amplifier), DSN (Deep Space Network) filter, and an ECA (Earth Coverage Antenna). The serial data output is set at 440.825 Mbit/s and is up-converted to 8200.5 MHz. The TWTA amplifies the signal such that the output of the DSN filter is 62 W. The DSN filter maintains the signal’s spectral compliance. An ECA provides nadir full simultaneous coverage, utilizing 120º half-power beamwidth, for all in view ground sites below the spacecraft's current position with no gimbal or actuation system. The system is designed to handle up to 35 separate ground contacts per day as forecasted by the DRC-16 (Design Reference Case-16).

The X-band transmitter is a single customized unit, including the LDPC FEC algorithms, the modulator, and up converter circuits. The transmitter uses a local TXCO (Thermally Controlled Crystal Oscillator) as a clock source for tight spectral quality and minimum data jitter. This clock is provided to the PIE XIB to clock mission data up to a 384Mbit/s data rate to the transmitter. The X-band transmitter includes an on-board synthesized clock operating at 441.625 Mbit/s coded data rate using the local 48 MHz clock as a reference. Using the on-board FIFO buffer, this architecture provides a continuous data flow through the transmitter (Ref. 107).

The S-band is used for all TT&C functions. The S-band uplink is encrypted providing data rates of 1, 32, and 64 kbit/s. The S-band downlink offers data rates of 2, 16, 32, RTSOH; 1 Mbit/s SSOH/RTSOH GN; 1 kbit/s RTSOH SN. Redundant pairs of S-band omni’s provide transmit/receive coverage in any orientation. The S-band is provided through a typical S-band transceiver, with TDRSS (Tracking and Data Relay Satellite System) capability for use during launch and early orbit and in case of spacecraft emergencies.

Onboard data transmission from an earth-coverage antenna:

• Real-time data received from PIE (Payload Interface Electronics) equipment

• Play-back data from SSR (Solid State Recorder)

• To three LGN (LDCM Ground Network) stations

- NOAA Interagency Agreement (IA) to use Gilmore Creek Station (GLC) near Fairbanks, AK

- Landsat Ground Station (LGS) at USGS/EROS near Sioux Falls, SD

- NASA contract with KSAT for Svalbard; options for operational use by USGS (provides ≥ 200 minutes of contact time)

• To International Cooperator ground stations (partnerships of existing stations currently supporting Landsat).

LS82019_Auto6F

Figure 8: Photo of the EM X-band transponder (left) and AMT S-band transponder (right), image credit: NASA

LS82019_Auto6E

Figure 9: Alternate view of the deployed LDCM spacecraft showing the calibration ports of the instruments TIRS and OLI (image credit: NASA/GSFC)

LS82019_Auto6D

Figure 10: The LDCM spacecraft with both instruments onboard, OLI and TIRS (image credit: USGS) 24)


Launch: The LDCM mission was launched on February 11, 2013 from VAFB, CA. The launch provider was ULA (United Launch Alliance), a joint venture of Lockheed Martin and Boeing; use of the Atlas-V-401 the launch vehicle with a Centaur upper stage. 25) 26)

Note: Initially, the LDCM launch was set for July 2011. However, since this launch date was considered as too optimistic, NASA changed the launch date to the end of 2012. This new launch delay buys some time for an extra sensor with TIR (Thermal Infrared) imaging capabilities.

Orbit: Sun-synchronous near-circular orbit, altitude = 705 km, inclination = 98.2º, period = 99 minutes, repeat coverage = 16 days (233 orbits), the nominal LTDN (Local Time on Descending Node) equator crossing time is at 10:00 hours. The ground tracks will be maintained along heritage WRS-2 paths. At the end of the commissioning period, LDCM is required to be phased about half a period ahead of Landsat 7. 27)

Figure 11: Anatomy of Landsat 8. Have you ever wondered what all the parts of a satellite do? This video identifies a few of the main components onboard Landsat 8 and tells you about their role in flying the satellite and capturing images of the Earth's surface below (video credit: USGS, NASA) 28)

Figure 12: The Landsat Data Continuity Mission (LDCM), a collaboration between NASA and the USGS (U.S. Geological Survey), will provide moderate-resolution measurements of Earth's terrestrial and polar regions in the visible, near-infrared, short wave infrared, and thermal infrared. There are two instruments on the spacecraft, the Thermal InfraRed Sensor (TIRS) and the Operational Land Imager (OLI). LDCM will provide continuity with the nearly 40-year long Landsat land imaging data set, enabling people to study many aspects of our planet and to evaluate the dynamic changes caused by both natural processes and human practices (video credit: NASA, USGS) 29)


Note: As of May 2019, the previously single large Landsat-8 file has been split into three files, to make the file handling manageable for all parties concerned, in particular for the user community.

This article covers the Landsat-8 mission and its imagery in the period 2019, in addition to some of the mission milestones.

Landsat-8 imagery in the period 2018

Landsat-8 imagery in the period 2017 to June 2013




Mission status and imagery of 2019

• September 11, 2019: Though ice losses from Antarctica and Greenland make up a greater volume and seem more dramatic, the losses from glaciers on Arctic islands and middle-latitude mountain ranges have been quite significant. A NASA-led research team has recently developed a tool to help researchers investigate more than 30 years of ice velocity data from glaciers, a key variable for detecting how Earth’s ice (the cryosphere) is changing. 30)

- Understanding how mountain glaciers change, and how their flow will change in the future, is complicated by the fact that no two glaciers are exactly alike. Malaspina Glacier in southeastern Alaska, for example, may not be moving fast but the motion within the glacier is complex.

Figure 13: This animation was composed from a sequence of false-color images acquired between 1986 and 2003 by the Landsat-5 and -7 satellites. The moving ice appears in shades of blue. Brown lines are moraines—areas where soil, rock, and other debris have been scraped up by the glacier and deposited at its sides. This debris often gets trapped as internal ribbons of rock where two glaciers merge and become one at a confluence (image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from the NASA MEaSUREs program at JPL. Story by Kathryn Hansen)

- Glaciers in this area of Alaska periodically surge, meaning they lurch forward quickly for one to several years. Surging can happen whether a glacier is advancing or retreating. Throughout the animation Malaspina appears to be retreating, and the increased meltwater and retreating ice is causing the lake (bottom-right) to expand. The zigzag pattern of the debris is caused by changes in velocity of the ice.

- “Glaciers all have their own personalities, so a detailed study of a single glacier often doesn’t apply to a region as a whole,” said Alex Gardner, a glaciologist at NASA’s Jet Propulsion Laboratory. “To make progress on understanding sea level rise and adapting large-scale water resources, we need to know the fundamental characteristics of glacier flow that apply over entire regions.”

Figure 14: This set of images are examples of the flow velocity maps that Gardner and colleagues can derive from ITS_LIVE data sets. Comparing velocities in 1997 with those of 2017, you can see that velocity changes along Malaspina are more subtle than for the trio of glaciers to the west, which appear to be surging (image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from ITS_LIVE and the NASA MEaSUREs program at JPL. Story by Kathryn Hansen)

- Gardner and colleagues from the University of Alaska and the University of Colorado have been working on an initiative known as the Inter-mission Time Series of Land Ice Velocity and Elevation, or ITS_LIVE. The core of the project is the comparison of images acquired with Landsat satellites over the past four decades. The researchers developed a highly efficient “feature tracking algorithm” in which high-performance computers track where the information contained within pixels has moved in the time spanned by two images. This is done millions of times between image pairs, resulting in a data set with many millions of estimated ice velocities.

- Data from ITS_LIVE have already revealed that high-mountain glaciers in Asia are flowing more slowly as they thin and melt. As ice thins, there is less gravitational pull tugging it down the mountainsides. “That might sound intuitive, but it is not necessarily so from glaciological point of view,” Gardner said. “Retreating glaciers have more meltwater reaching their beds; this water can act as a lubricant and cause it to speed up. But our data show that is not case in high mountain Asia.”

- Gardner suspects the same will hold true for Alaskan glaciers, but more analysis needs to be done. Can scientists establish a relationship between slowing and thinning ice that holds true for mountain glaciers globally?

- ITS_LIVE data were made publicly available through JPL and the National Snow and Ice Data Center web sites in the summer of 2019. “There is so much data, and we can’t explore it all on our own,” Gardner said. “Our hope is that by making the data easily accessible, researchers can access the tools they need to better understand glacier flow around the world.”

• September 3, 2019: Long recognized as one of the world’s most rapidly retreating glaciers, the Columbia Glacier in southern Alaska has been slowing down in recent years. “The total loss of ice is down substantially,” said Shad O’Neel. “But there is still impressive retreat.” 31)

- O’Neel, a glaciologist at the USGS Alaska Science Center, has kept a watchful eye on Columbia Glacier for years. Since the 1980s, the glacier has lost more than half of its total thickness and volume. Its front has retreated more than 20 km north in Columbia Bay, separating around 2011 into the West Branch (Post Glacier) and the Main Branch. (You can view the retreat from 1986 to present in our World of Change feature.)

LS82019_Auto6C

Figure 15: OLI on Landsat-8 acquired this image of Alaska's Columbia Glacier on 21 June 2019. One branch of the Glacier seems to have retreated as far as it can, while the other still has some distance to go (image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey. Story by Kathryn Hansen)

- By the time these images were acquired, the West Branch had retreated so far that it had divided into several independent glaciers. O’Neel thinks the branch could be at the limit of its retreat. “I haven’t confirmed that yet from a site visit,” O’Neel said, “but it is unlikely that much, if any, of the glacier bed is below sea level anymore.”

- Meanwhile, the Main Branch has thinned and resumed its retreat, shedding icebergs from its front and retreating again in summer 2019. Ample ice has been lost by volume—from the glacier’s front and surface—but it still has plenty of room to retreat.

- Scientists think the Main Branch could eventually pull back to Divider Mountain. (The mountain’s edge is just visible in the center of the Main Branch along the top-right edge of the satellite images.) The Main Branch could retreat even further if the shape of the fjord and land surface below the glacier allow it.

LS82019_Auto6B

Figure 16: This false-color image of the same scene helps to differentiate between snow and ice (bright cyan) and other components of the landscape such as open water (dark blue). Vegetation is green and exposed bedrock is brown, while rocky debris on the glacier’s surface is gray (image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey. Story by Kathryn Hansen)

- Analyzing Columbia Glacier’s retreat from beginning to end could help scientists understand what’s in store for the many other tidewater glaciers across southern Alaska. Changes happening along the way can be informative too.

- “Although we don’t usually think of single years as being important to glaciers, the 2019 summer has been so anomalous that it may be driving substantial change at many of Alaska’s glaciers,” O’Neel said.

• August 28, 2019: Today’s Image of the Day is an excerpt from our feature story: Trailing the Pacific Crest from Space. There is no award for completing the walk from Mexico to Canada through California, Oregon, and Washington. But read about the journeys of so-called “thru-hikers” of the Pacific Crest Trail (PCT), and it is clear that the 2,650 mile (4,265 km) hike changes you. Even walking a small segment of trail can connect you with the land, whether you access it in desert, forest, or alpine areas. 32)

- The PCT is not the longest or oldest National Scenic Trail in the United States, but it helped set the standard for trails that followed. The remarkable length of the Pacific Crest Trail, passing through 48 wilderness areas and some extremely demanding terrain, is especially apparent from space. NASA Earth Observatory identified locations along the trail where satellites and astronaut photography offer a unique perspective on this great hike.

LS82019_Auto6A

Figure 17: This image, acquired on June 11, 2019, with the Operational Land Imager (OLI) on Landsat-8, shows the PCT route (purple) across the bridge and beyond. The image is draped over topographic data from NASA’s Shuttle Radar Topography Mission (SRTM), image credit: NASA Earth Observatory, image by Joshua Stevens and Robert Simmon, using Landsat data from the U.S. Geological Survey and topographic data from the Shuttle Radar Topography Mission (SRTM). Story by Kathryn Hansen

- The PCT wraps around some of the most majestic peaks in the U.S. West, including some notable volcanoes. Glacier Peak and Mount Adams show up along the route in Washington. And then there’s Mount Rainier.

LS82019_Auto69

Figure 18: By the time thru-hikers reach northern Oregon, they have passed plenty of volcanoes, but they’re not out of the Cascade Arc yet. This is where the trail crosses the flanks of Mt. Hood—the state’s tallest peak. This stratovolcano is shown from the vantage point of an astronaut on the International Space Station (image credit: NASA Earth Observatory, image by Joshua Stevens and Robert Simmon, using the astronaut photograph ISS036-E-23847,provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. Story by Kathryn Hansen)

LS82019_Auto68

Figure 19: Towering above the horizon at 14,179 feet (4,322 m), Mount Shasta is sure to catch the eye of hikers. This majestic volcano in Northern California is at least partly visible from the trail for at least 500 miles. The image shows the space-based view of the mountain on November 1, 2013, acquired with the OLI on Landsat-8 and draped over topographic data (image credit: NASA Earth Observatory, image by Joshua Stevens and Robert Simmon, using Landsat data from the U.S. Geological Survey and topographic data from the Shuttle Radar Topography Mission (SRTM). Story by Kathryn Hansen)

- The volcano plays an important role in catching water for the region. Seasonal snowpack replenishes the local water supply that feeds rivers, streams, and nearby Shasta Lake—California’s largest reservoir.

- You can see other prominent PCT landmarks, such as Crater Lake, the Three Sisters volcanoes, and even a windfarm, in our full feature story.

• August 23, 2019: Volcanoes have a lot of dramatic ways to announce their presence: thick plumes of ash and steam; rivers and lakes of molten lava; rockfalls and lahars; earthquakes; even the sudden rising of an island above the water line. One of the more subtle and rarely observed displays is the pumice raft. 33)

LS82019_Auto67

Figure 20: On August 13, 2019, the Operational Land Imager on Landsat 8 acquired natural-color imagery of a vast pumice raft floating in the tropical Pacific Ocean near Late Island in the Kingdom of Tonga (image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Story by Michael Carlowicz)

- Volcanoes have a lot of dramatic ways to announce their presence: thick plumes of ash and steam; rivers and lakes of molten lava; rockfalls and lahars; earthquakes; even the sudden rising of an island above the water line. One of the more subtle and rarely observed displays is the pumice raft.

- Many of the world’s volcanoes are shrouded by the waters of the oceans. When they erupt, they can discolor the ocean surface with gases and debris. They also can spew masses of lava that are lighter than water. Such pumice rocks are full of holes and cavities, and they easily float.

LS82019_Auto66

Figure 21: NASA’s Terra satellite detected the mass of floating rock on 9 August; the discolored water around the pumice suggests that the submarine volcano lies somewhere below. By August 13, the raft had drifted southwest. As of August 22, the raft had moved north again and was a bit more dispersed, but still visible (image credit: NASA Earth Observatory, image by Joshua Stevens, using Terra data. Story by Michael Carlowicz)

- The Volcano Discovery web site reported that it received an email from a sailor on August 7, 2019, about clouds of smoke on the horizon in the direction of Fonualei volcano. According to a bulletin from the Smithsonian’s Global Volcanism Program (GVP), sailors began reporting sightings of the pumice raft by August 9. The crew of the catamaran Roam encountered the pumice and provided a detailed report on Facebook on August 15. The sailors described a “rubble slick made up of rocks from marble to basketball size such that water was not visible,” as well as a smell of sulfur.

- Volcanologists at the Smithsonian believe the evidence points to an unnamed submarine volcano near Tonga at 18.325° South, 174.365° West. The last report of an eruption at the site occurred in 2001, and the summit of the seamount is believed to stand about 40 m below the water line.

- Volcanologist Erik Klemetti of Denison University wrote: “Pumice rafts can drift for weeks to years, slowly dispersing into the ocean currents. These chunks of pumice end up making excellent, drifting homes for sea organisms, helping them spread... The erupted pumice means this volcano erupts magma high in silica like rhyolite.”

• On August 18, 2019, scientists will be among those who gather for a memorial atop Ok volcano in west-central Iceland. The deceased being remembered is Okjökull—a once-iconic glacier that has melted away throughout the 20th century and was declared dead in 2014. Landsat satellite images show the latter stages of its decline. 34)

- A geological map from 1901 estimated Okjökull spanned an area of about 38 km2. In 1978, aerial photography showed the glacier was 3 km2. Today, less than 1 km2 remains. The satellite images show the glacier during the latter part of its decline, on September 7, 1986 (Figure 22), and August 1, 2019 (Figure 23). The images were acquired with the Thematic Mapper (TM) on Landsat-5, and the Operational Land Imager (OLI) on Landsat-8, respectively.

LS82019_Auto65

Figure 22: TM image on Landsat-5 acquired on 7 September 1986 (image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Story by Kathryn Hansen)

- The dome-shaped glacier appears in the 1986 image as a solid-white patch, just north of the snow-filled crater. Snow is also visible around the glacier’s edges. In the August 2019 image, only a spattering of thin ice patches remain. Notice the areas of blue meltwater, which are likely associated with the mass of warm air that hit Iceland as it moved from mainland Europe to Greenland in late July.

LS82019_Auto64

Figure 23: OLI image on Landsat-8 acquired on 1 August 2019 (image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Story by Kathryn Hansen)

- The glacier’s demise is not just a matter of shrinking area. Glaciers form from snow that becomes compacted into ice over time. The ice then creeps downslope under its own weight, helped along by gravity. Okjökull has thinned so much, however, that it no longer has enough mass to flow. According to some definitions, a stagnant glacier is a dead glacier.

- Okjökull, also called Ok (jökull is Icelandic for “glacier”), was part of the Langjökull group—one of Iceland’s eight regional groupings of glaciers. Ice covers about 10 percent of the island, making it an integral part of the landscape. Loss of glacial ice has wide-ranging effects, with the potential to impact water resources, infrastructure, and even the rising of the land as it rebounds under a lighter load of ice.

- Scientists have noted that glaciers have disappeared from Iceland before, although perhaps none as ceremoniously as Okjökull. Anthropologists from Rice University produced a film about the glacier’s demise, and a plaque is set to be installed on the site of the former glacier.

• August 6, 2019: In Iceland, a country rich with compelling geologic phenomena, volcanoes and ice caps abound. Even the country’s rivers are connected to the landscape of fire and ice. 35)

- Iceland’s largest rivers by volume, the Þjórsá and Ölfusá, once flowed toward the coast as one river, joining about 25 kilometers from the modern-day coastline. Then about 8,700 years ago they separated when an eruption deposited the Great Þjórsá lava—the country’s largest lava flow. The rivers today run their separate courses, flowing southwest along the east and west sides of the lava flow.

LS82019_Auto63

Figure 24: The rivers are visible in these images of southwest Iceland, acquired on June 6, 2019, by the Operational Land Imager (OLI) on Landsat-8. The images show the rivers in the summer season when they are ice-free (in winter they are prone to flooding from ice jams). This wide view image shows the river’s locations relative to Reykjavik, Iceland’s capital city (image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Story by Kathryn Hansen with image interpretation by Emmanuel Pagneux, University of Iceland)

LS82019_Auto62

Figure 25: Detail image of Selfoss: The Ölfusá River is not Iceland’s longest river, measuring only 25 km from its headwaters to the ocean. Yet it moves an average of 423 m3/s of water — more than any other river in the country (image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Story by Kathryn Hansen with image interpretation by Emmanuel Pagneux, University of Iceland)

- As the river flows by the town of Selfoss, you can see threads of light blue water amid darker areas. Spring water and glacial water feed this part of the river and, given their differences in temperature and density, do not mix well. Dark areas indicate fairly translucent spring water (known as “black rivers” in Iceland). Light blue areas are glacial water, which take on an opaque appearance due to sediments (“glacial flour”) suspended in the water.

- The striking red patch on the river’s eastern shore is dissolved ferrous iron, also known as bog iron. According to Emmanuel Pagneux of the University of Iceland, the bog iron reaches the Ölfusá River via ditches that were once built to drain wetlands and convert them into pastures.

LS82019_Auto61

Figure 26: The Þjórsá River is both Iceland’s longest (230 km) and its second-largest by volume, moving an average of 370 m3/s of water. In this view, we see the river where it meets the Atlantic Ocean at the island’s south side. Before entering the ocean the river becomes braided, as channels of water flow around small, temporary islands of coarse sediment. The dark areas near the river’s mouth are wet volcanic sand. Where the water enters the ocean, the stark contrast in color is again due to two water types that do not mix well: in this case, glacial water and seawater of differing temperatures and densities (image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Story by Kathryn Hansen with image interpretation by Emmanuel Pagneux, University of Iceland)

• August 6, 2019: If you look at the three largest cities in California by area—Los Angeles, San Diego, and California City—one stands out. Los Angeles has 3.7 million people; San Diego has 1.3 million. California City has a population of just 14,000 people. 36)

LS82019_Auto60

Figure 27: The big dreams of a 1960s real estate developer have not materialized, but that has not stopped California City from pushing forward. Why does such an expansive city have so few people? Satellite images acquired on 18 October 2018 by OLI on Landsat-8 help explain (image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey. Story by Adam Voiland)

LS82019_Auto5F

Figure 28: Though a large network of perfectly gridded blocks and curving residential streets remain etched into the Mojave Desert, houses are scarce (image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey. Story by Adam Voiland)

LS82019_Auto5E

Figure 29: Even near the lake and golf courses at the center of town, empty lots abound (image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey. Story by Adam Voiland)

- California City was incorporated in 1965 after real estate developer Nat Mendelsohn purchased thousands of acres of open land and started paving roads and laying water pipes for what he envisioned would be a city to rival Los Angeles. But interest from buyers never matched his grand vision, and by 1980, the town had only 2,700 residents.

- Still, an assortment of unusual ventures has kept the city going. Many people who live in California City today work at nearby Edwards Air Force Base, a borax mine, a prison, a vehicle testing facility, or one of the nation’s few spaceports.

LS82019_Auto5D

Figure 30: The borax mine is California’s largest open-pit mine, producing about half of the world’s refined borates. Borates are used in fertilizers, in metallurgy, and as components of specialized types of glass, anticorrosive coatings, fire retardants, and detergents (image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data, observed on 18 October 2018, from the U.S. Geological Survey. Story by Adam Voiland)

LS82019_Auto5C

Figure 31: Surrounded by solar panels, engineers test automobiles, motorcycles, and ATVs at speeds up to 320 km/hour on the winding roads of the Honda Proving Center (below). The prison (Figure 27), which used to hold people detained by U.S. immigration officials, now houses 2,300 inmates from California (image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data, observed on 18 October 2018, from the U.S. Geological Survey. Story by Adam Voiland)

LS82019_Auto5B

Figure 32: The Mojave Air and Space Port lies 25 km (15 miles) to the southwest. In 2004, federal authorities certified the facility as the first spaceport in the United States. Soon after, a private company launched a person into space on the rocket-powered aircraft SpaceShipOne. While experimental aircraft are a common sight, so are planes that are decades old. The air field also hosts a large storage area and boneyard for old planes (image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data, observed on 18 October 2018, from the U.S. Geological Survey. Story by Adam Voiland)

• July 31, 2019: o say the Dead Sea is merely a salt lake is like calling the Great Wall of China a pile of bricks—it does not quite capture how unique it is. 37)

- The Dead Sea is the second-saltiest lake in the world. Its surface and shores stand at the lowest elevation (around 435 meters or 1,430 feet) of any land mass not under water or ice. With a salt concentration above 30 percent, the lake water is nearly ten times saltier than the oceans. Feeling like olive oil mixed with sand, the water is so dense that humans float without effort. The salinity makes it difficult for any plant or animal to survive—hence its name.

LS82019_Auto5A

Figure 33: As water levels drop in the Dead Sea, salt is piling up on the lakebed. This image shows the Dead Sea and the Jordan Rift Valley on July 21 2019, as observed by the Operational Land Imager on the Landsat 8 satellite. The green rectangles on the south end of the lake are salt evaporation ponds, which are used to extract sodium chloride and potassium salts for the manufacturing of polyvinyl chloride (PVC) and other chemicals (image credit: NASA Earth Observatory images by Lauren Dauphin, using Landsat data from the U.S. Geological Survey. Story by Kasha Patel)

- For the past two to three decades, water levels on the Dead Sea have been dropping at about 1.2 meters per year—an increase from 0.7 meters per year in the 1970s and 1980s. Levels have primarily dropped as water has been diverted from its only tributary, the Jordan River, to serve surrounding communities with water. Lake water also has been pumped to the evaporation ponds.

LS82019_Auto59

Figure 34: As the water level drops, the lake becomes saltier, particularly near the surface. Scientists from the Dead Sea Observatory have discovered that salt has been precipitating out of the water and coating the bottom of the lake. They found the amount of salt on the lakebed (photograph) depended on the season and the various salt densities throughout the lake. The salt layer has been growing about 10 cm thicker every year for the past four decades, showing seasonal alternations of the layers’ properties (image credit: Photograph provided by the Dead Sea Observatory, Geological Survey of Israel. Story by Kasha Patel)

- During the summertime, the lake forms a warm, less dense top layer and a colder, denser bottom layer. When the top of the lake is disturbed by a wave or motion, tiny parcels of warm water—called “salt fingers”—travel down to the colder water. As the warm salt fingers cool on the journey down, the water mass can hold less salt. The salt precipitates out and forms crystals on the lakebed through this process known as double-diffusive convection.

- “In the ocean, the salt fingers might exist, but you’re not going to see them with the naked eye,” said Raphael Ouillon, a fluid dynamics expert at the University of California, Santa Barbara. “What is specific to the Dead Sea is that it’s almost at full saturation of how much salt can be dissolved, so salt precipitates out easily.”

- The Dead Sea is the only salt lake where this “salt fingering” process is known to occur. Scientists think it may be a clue to how salt deposits formed millions of years ago on other ancient sea beds, and specifically, how salt layers are thicker in the central parts of the basins and thin or absent from the shallow parts of these basins. For instance, more than five million years ago, the Mediterranean Sea’s dried out and left thick deposits of salt. Although the sea has since refilled, this salt buildup could have formed through a similar mechanism as currently observed in the Dead Sea.

• July 30, 2019: Plunging deep into the ground, the gaping hole of an open-pit mine is unmistakable from space. People have excavated such pits on every continent except Antarctica. 38)

- Copper mining began at Palabora in 1965, and by 1967 the open-pit mine was fully operational. The hole reached 800 meters down into the Earth before the depletion of resources made it uneconomical to continue mining in the pit. Operations moved underground (below the pit) and mostly out of sight in the early 2000s. The new mining method, known as block caving, involves extracting rock below an ore body, letting the ore break under its own weight, and then hauling the ore back to the surface.

- Three years after the start of underground mining at Palabora, cracks grew in the wall of the pit until the northwest wall collapsed. The image of Figure 36 shows a detailed view of that landslide, which is still visible in 2019. The collapse damaged some infrastructure—roads, power and water lines, and a railway line—but critical mine infrastructure stayed intact and underground mining continues there today.

- The site has become a case study in the challenges in transitioning from surface to underground mining. For example, researchers started using satellite data to improve the models that predict how mining underground will deform the surface.

- People were mining South Africa’s copper and iron resources long before the advent of open pit mines. Some archaeological estimates date mining artifacts back to at least 800 CE. In neighboring Kruger National Park, more than 250 archaeological sites show signs of human occupation back about 1 million years ago.

LS82019_Auto58

Figure 35: The pit near Phalaborwa and Kruger National Park is the most visible sign of a long history of mining in the region. The mine pictured here has been growing vertically and horizontally near Phalaborwa, South Africa, for more than 50 years. The Operational Land Imager (OLI) on Landsat 8 acquired this image of the Palabora mine on July 2, 2019. It is South Africa’s largest open-pit mine, measuring almost 2 km wide. It is about half the width of the world’s largest open-pit mine, which is at Bingham Canyon in Utah (image credit: NASA Earth Observatory image by Joshua Stevens and Allison Nussbaum, using Landsat data from the U.S. Geological Survey and topographic data from the Shuttle Radar Topography Mission (SRTM). Story by Kathryn Hansen)

LS82019_Auto57

Figure 36: A more detailed image of the Palabora mine showing the landslide (image credit: NASA Earth Observatory image by Joshua Stevens and Allison Nussbaum, using Landsat data from the U.S. Geological Survey and topographic data from the Shuttle Radar Topography Mission (SRTM). Story by Kathryn Hansen)

• July 24, 2019: With a series of scalloped bays, terraced sea cliffs, bizarre natural rock sculptures, and clusters of mud volcanoes, the barren landscape of Pakistan’s Makran Coast seems like a geologist’s dreamscape. 39)

- The coastline sits immediately north of an active tectonic plate boundary, a subduction zone where the oceanic crust of the Arabian Plate gets squeezed underneath the continental crust of the Eurasian Plate. In the process, sedimentary rock from the top of the Arabian Plate get scraped off and pile up on the edge of the Eurasian Plate in a convoluted jumble known as an accretionary wedge.

LS82019_Auto56

Figure 37: Striking geology, new ports, and a few hammerhead sharks can be found along Pakistan’s Arabian Sea coast. OLI on Landsat-8 acquired this image of the Ormara peninsula on 15 February 2019. The Landsat data is draped over topographic data from NASA’s SRTM (Shuttle Radar Topography Mission), image credit: NASA Earth Observatory image by Joshua Stevens, using Landsat data from the U.S. Geological Survey and topographic data from SRTM, story by Adam Voiland

LS82019_Auto55

Figure 38: Nadir OLI image of the Ormara peninsula acquired on 15 February 2019 (image credit: NASA Earth Observatory image by Joshua Stevens, using Landsat data from the U.S. Geological Survey, story by Adam Voiland)

- One of the more eye-catching features of the Makran Coast are two hammerhead-shaped peninsulas near the cities of Gwadar and Ormara. Both of the peninsulas are small fault blocks, or horsts— blocks of crust that have been lifted or have remained stationary while land on either side sank. The features, which tilt seaward, are associated with faults that run parallel to the coast.

LS82019_Auto54

Figure 39: Nadir OLI image of the Gwadar peninsula acquired on 27 April 2019 (image credit: NASA Earth Observatory image by Joshua Stevens, using Landsat data from the U.S. Geological Survey, story by Adam Voiland)

- Ormara, which is higher than Gwadar, has elevations of 183 to 305 meters on the seaward side and 427 meters on the inner side. The Gwadar and Ormara horsts both used to be islands. However, the action of waves and drifting sand over time created long sandy spits (tombolos) that connect the islands to the mainland.

- The Makran Coast has an active fishing industry. Some estimates suggest between 8,000 and 10,000 small fishing boats operate in the area, with larger bottom trawlers operating in the region as well.

- The regional emphasis on fishing has had consequences for some of the fish that live in the Arabian Sea. The Arabian Sea has some of the most threatened populations of sharks, rays, and chimaeras in the world, according to a recent study. Hammerhead sharks were among the most vulnerable species in the region, according to the researchers.

- Large port facilities have been built on both of these peninsulas in the past few decades. In Ormara, the Pakistan military began building a naval base in 1994. In Gwadar, construction of a deepwater port on the Demi Zirr harbor began in 2002.

• July 17, 2019: In a sweeping nationwide study, researchers from Denmark’s University of Aarhus found that childhood exposure to green space—parks, forests, rural lands, etc.—reduces the risk for developing an array of psychiatric disorders during adolescence and adulthood. The study could have far-reaching implications for healthy city design, making green space-focused urban planning an early intervention tool for reducing mental health problems. 40)

- Using data from the Landsat satellite archive and the Danish Civil Registration System, researchers tracked the residential green space around nearly a million Danes and correlated that with their mental health outcomes. The scientists found that citizens who grew up with the least green space nearby had as much as a 55 percent increased risk of developing psychiatric disorders such as depression, anxiety, and substance abuse in later years.

LS82019_Auto53

Figure 40: New study uses satellite and demographic data to show how the prolonged presence of green space is important for a healthy society (image credit: NASA Earth Observatory, image by Joshua Stevens, using data courtesy of Engemann, K., et al. (2019). Story by Laura Rocchio, Landsat Science Outreach Team, with Mike Carlowicz)

- Using data from the Landsat satellite archive and the Danish Civil Registration System, researchers tracked the residential green space around nearly a million Danes and correlated that with their mental health outcomes. The scientists found that citizens who grew up with the least green space nearby had as much as a 55 percent increased risk of developing psychiatric disorders such as depression, anxiety, and substance abuse in later years.

- The research was published in the Proceedings of the National Academy of Sciences. It is the largest epidemiological study to document a positive connection between green space and mental health. 41)

- The impact of green space throughout childhood is significant. Exposure to green space is comparable to family history and parental age when predicting mental health outcomes. Only socioeconomic status was a slightly stronger indicator.

- Researchers are still working out exactly why green space is so beneficial, but it clearly provides health benefits across the population. It can encourage exercise, provide spaces for socializing, decrease noise and air pollution, and improve immune function by providing exposure to beneficial microbiota. It also can help with psychological restoration; that is, green space provides a respite for over-stimulated minds.

- Green space most strongly protects against mood disorders, depression, neurotic behavior, and stress-related issues, the study found, signaling that psychological restoration may be the strongest protective mechanism that green space offers. The effect of green space is also dose-dependent, meaning those who have longer exposures to green space have greater mental health benefits.

- The map and line plots of Figure 40 describe the relationship between green space and relative mental health. The darkest greens on the map are the most rural or undeveloped areas, while the darkest purples are the most developed and paved urban centers. The line plots show the relative risk of developing a psychiatric disorder (vertical axis) versus the proximity to green space. Green space is defined by the Normalized Difference Vegetation Index (NDVI), a satellite measurement of the greenness of a parcel of land (with greenest areas to the right on the horizontal axis). Note how the mental health risks fall even in highly urbanized areas when a citizen lives close to a green space.

- Previous research had already established that city living can increase the risk for some psychiatric disorders. While the specific mechanism behind the risk is unknown, those dwelling in cities have higher neural activity, which is linked to higher stress levels. With more than half of the world’s population now residing in cities—and that number is growing—health professionals are looking for ways to reduce the risk of psychiatric disorders that city living can cause.

- While urban areas stand to benefit most from increased green space, this protective association is not just for city dwellers. The study found that longer exposure to green space was linked to bigger risk reductions from the city center to the rural outskirts. No upper limit to the benefit was found.

- Two rich and extensive data sources made this research possible: the Danish register—which contains georeferenced addresses, health records, and socioeconomic data for citizens reaching back into the 1960s—and the long, global archive of 30-meter Landsat data. Researchers gathered information on more than 940,000 Danish citizens born between 1985 and 2003. The team then traced the proximity of those children to green space from birth to age 10, as well as their long-term mental health beyond age 10. To find the presence or absence of vegetation around each citizen’s home, Engemann and colleagues used Landsat to calculate NDVI, a ratio of how vegetation reflects or absorbs near-infrared light (which plants reflect strongly) versus visible red light (which plants largely absorb). Higher NDVI levels indicate a greener, more vegetated landscape.

- “We decided to use Landsat data because it was free, high-resolution, and covered Denmark back to 1985,” lead author Kristine Engemann of Aarhus University explained. “The global geographic range together with free availability ensures that our study could potentially be repeated in other countries.”

• July 16, 2019: For about eight months of the year, the Kolyma River is frozen to depths of several meters. But every June, the river thaws and carries vast amounts of suspended sediment and organic material into the Arctic Ocean. That surge of fresh, soil-ridden waters colors the Kolyma Gulf (Kolymskiy Zaliv) dark brown and black. 42)

- The Kolyma is the largest river system underlain with continuous permafrost. It is primarily fed by spring snowmelt and summer rainfall. The largest discharges usually occur in June, after the snow and ice start to thaw. The river has a mean annual discharge of about 136 km3 of water per year—making it one of the six largest rivers to drain into the Arctic Ocean.

LS82019_Auto52

Figure 41: This image from the Operational Land Imager on the Landsat-8 satellite shows the “blackwater” stream on June 16, 2019. Note that the East Siberian Sea remains covered with ice (image credit: NASA Earth Observatory, image by Norman Kuring/NASA's Ocean Color Web, using Landsat data from the U.S. Geological Survey. Story by Kasha Patel)

- Discharge levels and streamflow can be influenced by variations in climate but also human impacts. After the addition of a dam in 1986, researchers noted fluctuations in discharge in different sections of the river, which can affect vegetation patterns, ocean salinity, and Arctic sea ice formation.

- Researchers have also examined the concentration and composition of dissolved organic matter in the Kolyma River and found humic substances—organic compounds that make up the major organic component of soil—during the spring thaw.

- They also collected samples from two of Kolyma’s tributaries and found carbon-rich permafrost as old as the Pleistocene era. Locally known as yedoma, this permafrost contains large concentrations of organic matter. Permafrost degradation caused by climate change could expose more ancient organic matter to the river system.

- The Kolyma region has a long history of human activity. Under Joseph Stalin’s rule in the mid-1900s, Kolyma was a notorious Gulag labor camp for gold mining, road building, lumbering, and construction. In the much deeper past, more than 10,000 years ago, the land was occupied by ancestors of Native Americans, according to geneticists and archaeologists.

• July 10, 2019: After a 7.7 magnitude earthquake shook western Pakistan in September 2013, an oval-shaped island sprang up in a shallow bay near the port city of Gwadar. The island, called Zalzala Koh (Earthquake Mountain in Urdu) was the product of a mud volcano triggered by the earthquake. At the time, geologists said the tiny island—20 meters high, 90 meters wide, and 40 meters long—would not last long when faced with waves and tides that would chip away at the muddy, silty feature. 43)

- They were right. For a few years, Landsat regularly acquired images with trails of mud and sediment discoloring the water around the island. By the end of 2016, not much terrain was left above the water line. Satellite images indicated that the Arabian Sea was washing over the island at high tide, affirming local news stories that the island had disappeared.

LS82019_Auto51

Figure 42: Zalzala Koh may be out of sight for now, but that does not mean it is completely gone. In 2019, hints of the island persist in Landsat imagery. As recently as June 2019, Landsat observed trails of sediment circulating around the submerged base. The series of images above shows the island in April and September 2013, November 2016, and April 2019. The Advanced Land Imager (ALI) on EO-1 acquired the September 2013 image; all the others images came from the Operational Land Imager (OLI) on Landsat 8 (image credit: NASA Earth Observatory, images by Joshua Stevens, Robert Simmon, and Jesse Allen, using Landsat data from the U.S. Geological Survey and EO-1 ALI data from the NASA EO-1 team. Story by Adam Voiland)

- The mud volcanoes along Pakistan’s coast are a byproduct of plate tectonics. The Arabian plate is sinking beneath the Eurasian plate by a few centimeters per year. The process pushes soft sediments onto the edge of the Eurasian plate and become a key ingredient for mud volcanoes.

- “The rapid accumulation of soft, clay-rich sediments along the edge of the Eurasian plate, combined with the high tectonic stresses, causes a sharp build-up of pressures in the water and gases that are trapped within the sedimentary rock. The fluid pressures become so great that clay-rich sediments buried deep underground behave almost like a liquid,” explained University of Adelaide geologist Mark Tingay. “A mud volcano forms when the fluid pressures become large enough to fracture the overlying rocks that are sealing these intense pressures, allowing the muds and gases to erupt to the surface.”

- Islands produced by mud volcanoes in this region have a history of coming and going. About 125 kilometers to the east, another small, circular mud island—Malan Island—has emerged a few kilometers off the coast and eroded away twice in the past 20 years (emerging in 1999 and 2010). Malan Island is also reported to be one of three mud volcano islands that briefly emerged following a devastating earthquake and tsunami in Balochistan in 1945.

• June 18, 2019: The Jakobshavn Glacier in western Greenland is notorious for being the world’s fastest-moving glacier. It is also one of the most active, discharging a tremendous amount of ice from the Greenland Ice Sheet into Ilulissat Icefjord and adjacent Disko Bay—with implications for sea level rise. 44)

- Jakobshavn has spent decades in retreat—that is, until scientists observed an unexpected advance between 2016 and 2017. In addition to growing toward the ocean, the glacier was found to be slowing and thickening. New data collected in March 2019 confirm that the glacier has grown for the third year in a row, and scientists attribute the change to cool ocean waters.

LS82019_Auto50

Figure 43: This image, acquired on 6 June 2019, by the OLI (Operational Land Imager) on Landsat-8, shows a natural-color view of the glacier (image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from the U.S. Geological Survey, and data courtesy of Josh Willis/NASA JPL and the Oceans Melting Greenland (OMG) Program. Story by Kathryn Hansen)

- “The third straight year of thickening of Greenland’s biggest glacier supports our conclusion that the ocean is the culprit,” said Josh Willis, an ocean scientist at NASA’s Jet Propulsion Laboratory and principal investigator of the Oceans Melting Greenland (OMG) mission.

LS82019_Auto4F

Figure 44: These maps show how the glacier’s height changed between March 2016 and 2017 (top); March 2017 and 2018 (middle); and March 2018 and 2019 (bottom). The elevation data come from a radar altimeter that has been flown on research airplanes each spring as part of OMG. Blue areas represent where the glacier’s height has increased, in some areas by as much as 30 m/year (image credit: (image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from the U.S. Geological Survey, and data courtesy of Josh Willis/NASA JPL and the Oceans Melting Greenland (OMG) Program. Story by Kathryn Hansen)

- The change is particularly striking at the glacier’s front (solid blue area on the left) between 2016 and 2017. That’s when the glacier advanced the most, replacing open water and sea ice with towering glacial ice. The glacier has not advanced as much since then, but it continues to slow and thicken.

- Willis compared the glacier’s behavior to silly putty. “Pull it from one end and it stretches and gets thinner, or squash it together and it gets thicker,” he said. The latter scenario is what is happening now as the glacier slows down: Notice that by the third year, thickening is occurring across an increasingly wide area.

- Willis and colleagues think the glacier is reacting to a shift in a climate pattern called the North Atlantic Oscillation, which has brought cold water northward along Greenland’s west coast. Measurements of the temperatures collected by the OMG team show that the cold water has persisted.

- “Even three years after the cold water arrived, the glacier is still reacting,” Willis said. “I’m really excited to go back this August and measure the temperature again. Is it still cold? Or has it warmed back up?”

See also the following video:

Figure 45: Greenland's Jakobshavn Glacier Reacts to Changing Ocean Temperatures. NASA's Oceans Melting Greenland (OMG) mission uses ships and planes to measure how ocean temperatures affect Greenland's vast icy expanses. Jakobshavn Glacier, on Greenland's central western side, has been one of the island's largest contributor's to sea level rise, losing mass at an accelerating rate. 45)

• June 17, 2019: The largest solar park in the world now stands in China’s northwestern Ningxia province. Sprawling across 43 km2 (17 square miles), the Tengger Desert Solar Park provides China with 1.5 gigawatts (GW) of new solar generation capacity. 46)

- But don’t expect the Tengger facility to hold that “largest” status for long. Work is ongoing on even larger solar projects in India, Egypt, and the United States.

LS82019_Auto4E

Figure 46: The Operational Land Imager (OLI) acquired this image the Tengger Desert Solar Park in northwestern China on 22 April 2019 (image credit: NASA Earth Observatory image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Story by Adam Voiland)

- The completion of the Tengger facility helped push China’s installed solar capacity above 176 GW. The country is, by far, the world’s leader in terms of installed capacity, with about 32 percent of the global total, according to data published by the International Energy Agency. China is followed by the European Union (115 GW) and the United States (62 GW). Germany (45 GW) leads among countries in the European Union.

- However, Tengger’s 1.5 GW capacity does not mean 100 percent of the energy gets used. Most people in China live in the eastern part of the country, but most large solar parks are in deserts in the northwest, where demand for power is low. There are some big technical hurdles in transmitting power generated in these far-flung places to where it can be used.

- At times, provinces in northwest China have been shedding as much as one-third of the solar power produced—the industry term for this is curtailment—because of transmission bottlenecks, oversupply, and other issues with the electrical grid. China’s National Energy Administration even blocked the development of some new solar power projects in western Gansu, Xinjiang, and Tibet to prevent new power plants from sitting idle as they wait for better connections to the grid, according to Reuters.

• June 11, 2019: A witch’s cauldron. Gastrointestinal reflux. A kale smoothie. The green swirls of this satellite image (Figure 47) may conjure up many mental pictures—except what it actually is. On April 12, 2019, OLI on Landsat-8 acquired this image of Lake Khanka. 47)

This shallow freshwater lake is located on the border of Russia and northeastern China. The green hues in the water are most likely chlorophyll-rich phytoplankton in the lake, which contains a fairly constant presence of diatoms. The phytoplankton and other suspended solids in the lake are easily mixed by wind. This mixing of material between the surface and bottom often clouds the water, which usually starts to lose clarity in less than a meter.

LS82019_Auto4D

Figure 47: Lake Khanka straddles the Sino-Russian border in the Far East about 160 kilometers north of Vladivostok. It is a very shallow lake prone to wind-driven sediment resuspension. This image was collected by OLI on Landsat-8 on April 12, 2019 (image credit: NASA Earth Observatory, image by Norman Kuring, NASA’s Ocean Color web, and Lauren Dauphin. Story by Kasha Patel)

- The microscopic particles and organisms can be seen in great detail due to a special editing technique that combines scientific expertise and an artistic touch. Like a photographer adjusting lighting and using filters, Norman Kuring of NASA’s Ocean Biology group works with various software programs and color-filtering techniques to draw out the fine details in the water. The swirls in the water are all quite real; Kuring simply separates and enhances certain shades and tones in the data to make the biomass more visible. Without Kuring’s processing of the subtle colors in the image, Lake Khanka can appear less compelling.

- As one of the largest freshwater lakes (by area) in Far Eastern Russia and China, Lake Khanka (known as Lake Xingkai in Chinese) plays an important role in supporting biodiversity. It is a major source of freshwater for birds (particularly waterfowl) and home to some of the highest levels of bird diversity in Eurasia. Khanka is also home to many freshwater species of fish and aquatic animals, including a large population of rare Chinese soft-shelled turtles.

- The lake is surrounded by open lowlands, wetlands, grassy meadows, and swamps, which also contain many rare and endangered plants. The lake has been designated as a Ramsar Convention Wetland Site, promoting conservation and sustainable use of the wetlands. The lake is also included on UNESCO’s “World Biosphere Reserves” list.

• June 3, 2019: Belize is a small Central American country whose people pride themselves on trying to maintain a balance between development and conservation. I grew up in Belize City, near where the Belize River empties into the Caribbean Sea. The country’s landscape—covered by tropical forests and a network of rivers extending into the ocean—is fascinating, especially when viewed from the vantage point of space. I was able to return to Belize to join scientists from four organizations (Wildlife Conservation Society, the University of Alabama in Huntsville, the University of Georgia and NASA’s Jet Propulsion Laboratory) to kickoff research the likes of which Belize has never seen before. 48)

- Our NASA-supported project, “Climate-influenced Nutrient Flows and Threats to the Biodiversity of the Belize Barrier Reef Reserve System,” (BZ-SDG for short), examines how satellite data can help with the Sustainable Development Goals (SDGs), a set of 17 goals agreed to at the United Nations’ General Assembly in 2015. BZ-SDG looks at how NASA Earth observation data can help with monitoring progress on two goals (SDGs 14 and 15), “life below water” and “life on land.” While BZ-SDG is the first NASA project focused specifically on Belize, it builds on NASA’s earlier work in Central America under the SERVIR program, implemented by USAID and NASA. The project is also a demonstration for the Earth Observations for the Sustainable Development Goals (EO4SDG) initiative.

LS82019_Auto4C

Figure 48: Left: A Landsat-8 image from October 2018 shows a sediment plume originating from the mouth of the Belize River, extending 8 km out to sea. Right: Relatively clear waters shown in another image from the same satellite from May 2019 (image credit: NASA Earth Observatory)

- There is increased interest in using satellite imagery for monitoring coastal areas in Belize, following on a coastal zone management program that began in the early 1990s. The Belize Barrier Reef is the second longest coral reef system in the world, and local scientists want to know what impact activities on land are having on these reef ecosystems. Coral reefs are like forests of the sea, and are important for maintaining fisheries. A 2008 study found that coral reefs, in association with mangroves, contribute to between 12% and 15% of Belize’s tourism earnings. Sometimes plumes of sediments wash down the country’s river systems and can be seen by satellite images extending all the way out to the coral reefs. Activities inland were also suspected of contributing to a large bloom of green algae off Belize’s coast in 2011.

- As “eyes in the sky,” satellites can survey vast extents of land, as well as the seas (i.e. the ‘seascape’), showing us information about water quality using different parts of the spectrum of light. In addition to specific satellites that focus on color of river water and sea water, there are also ways to use satellite imagery to track changes within that water, like sediments flushed into the rivers by erosion occurring further inland, or chlorophyll caused by photosynthesizing organisms.

LS82019_Auto4B

Figure 49: Left: A March 2013 Landsat-7 image of what the water off Belize’s coast normally looks like, with the coral reefs in light blue. Right: An algal bloom in a June 2011 Landsat-7 image can be seen as an almost phosphorescent green (image credit: NASA Earth Observatory)

- Upon arrival to Belize, we were joined by Sol Kim and Rafael Grillo, two Ph.D. students from the University of California, Berkeley, to carry out these on-site validation measurements. Over a period of two days, our team collected water quality samples on a path extending from just off the coast of Belize City all the way out to barrier reef—a distance of 15 km out to sea. By comparing what the satellites “see” with what is measured in the field, researchers can help improve how the satellites estimate water quality in Belize’s coastal waters.

LS82019_Auto4A

Figure 50: Project co-Investigator Christine Lee (left) of JPL writing the label for a sea water sample being collected by co-Investigator Deepak Mishra (right) of the University of Georgia (image credit: NASA Earth Observatory)

- We also traveled a few kilometers up two sections of the Belize River: first, up the main channel for a distance of 8 km, and 10 km up Haulover Creek, which divides Belize City north-south and is the final section of the river. Aside from the water samples collected, the Belize River “mangrove cathedrals”—stands of red mangrove (Rhizophora mangle) rising to about 20 m in height—were also seen on the journey through Haulover Creek.

LS82019_Auto49

Figure 51: The interlocking canopies of red mangrove—reminiscent of church steeples—gave rise to the name “mangrove cathedrals” (image credit: NASA Earth Observatory)

- In total, 50 water quality samples were taken in the river and in the sea to determine sediment concentrations at each site. Additionally, using a hand-held sensor and a simple instrument called a Secchi disk, parameters like water depth, salinity, dissolved oxygen, pH, and temperature, were also measured. Locations of the 50 sample sites were geolocated using a handheld GPS receiver.

LS82019_Auto48

Figure 52: Locations of the 50 water quality samples collected on May 14 and 15, overlaid on top of a Landsat-8 image from May 20, 2019 (image credit: NASA Earth Observatory)

- On May 15, measurements were even taken at the same time as the Sentinel-2A satellite (from Europe’s Copernicus system) passed overhead! Unfortunately, the conditions were cloudy, so it wasn’t possible to estimate sediment concentrations from that imagery.

LS82019_Auto47

Figure 53: Copernicus Sentinel-2A image of Belize captured on Wed. May 15, when we were in the field; the red dots are the locations of the 21 water quality samples we collected that same day (image credit: ESA, NASA Earth Observatory)

- Another fascinating part of the monitoring process is sampling in visibly tannin-rich river water near the mangrove cathedrals. Water could not be seen in different types of satellite images reviewed, including 30 m Landsat imagery (NASA / USGS), 10 m Sentinel-2 imagery (European Space Agency / Copernicus) or 3 m Planet Labs Planetscope imagery. This is partly due to how narrow the river is, and mangrove trees overhanging the river, but it also means that it isn’t possible to use those types of images to examine water quality in portions of the Haulover Creek.

- Calibrating the satellite-based estimates of water quality (from Landsat and Sentinel-2) will rely on measurements from the water quality samples collected. Since seasonal influences affect water quality, this year’s sampling was timed to coincide with the end of the dry season. Additional water quality samples are planned to be collected during the wet season later this year, as well as next year’s dry season. Using this data, our team expects to work with local partner organizations like Belize’s Coastal Zone Management Authority & Institute to provide an interactive virtual dashboard that shows how water quality is changing across the coast over time. The country will be able to quickly detect when water quality events affecting Belize’s coral reefs occur with the dashboard.

LS82019_Auto46

Figure 54: April 2019 Planetscope imagery of some of the study locations (image credit: Planet Labs)

Note: This research is supported by NASA under cooperative agreement number #80NSSC19K0200. The project team includes Nicole Auil-Gomez, project co-Investigator Dr. Alex Tewfik, Myles Phillips, Victor Alamina, Ralna Lewis, and Deseree Arzu of the WCS (Wildlife Conservation Society), project Principal Investigator Dr. Robert Griffin and co-Investigator Dr. Emil Cherrington of UAH, project co-Investigator Dr. Deepak Mishra of UGA, project co-Investigator Dr. Christine Lee of NASA JPL, and Ph.D. students Sol Kim, Xiaowei Wang, and Rafael Grillo Avila of UC-Berkeley. Dr. Cindy Schmidt, Associate Program Manager for the Ecological Forecasting program of the NASA Applied Science Program, also participated in the field visits.

This entry was posted on Monday, June 3rd, 2019 at 5:29 pm and is filed under Connecting Space to Village.

• May 15, 2019: While most Himalayan glaciers are retreating, about 200 in the Karakoram Range are doing the opposite. Scientific and military authorities in Pakistan are monitoring one of them closely due to the potential for flooding. 49)

- About 1 percent of the world’s glaciers surge. These glaciers cycle through periods when they abruptly flow several times faster than usual. At peak speeds, surging glaciers can advance several meters per day—fast enough to block streams, bulldoze trees, crash into roads, and damage infrastructure. Surges typically last for a few months (and sometimes several years), and are then followed by a period of little or no movement that can last for a decade or longer.

LS82019_Auto45

Figure 55: OLI on Landsat-8 acquired this image on 1 April 2019 [image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data from the USGS. Story by Adam Voiland, with information from Jeff Kargel (Planetary Science Institute), Cameron Watson (University of Arizona), Andreas Kääb (University of Oslo), and Umesh Haritashya (University of Dayton)]

- One surging glacier in northern Pakistan sits near Mount Shishpar (also Shisparé or Shishper), a 7,611-meter peak in the Hunza District. In April 2018, the debris-covered glacier started to accelerate, with certain parts moving as fast as 13 to 18 meters (43 to 59 feet) per day. Since the surge started, the front of Shishpar Glacier has advanced by about 1 kilometer. As the ice pushed south past an adjacent valley, it blocked a meltwater stream flowing from the neighboring Muchuhar Glacier. By autumn 2018, the water had pooled up and formed a sizable lake.

LS82019_Auto44

Figure 56: These images, acquired by OLI on on Landsat-8, show the position of the glacier and lake on April 1, 2019 (right), compared to April 5, 2018. The ice appears gray because dust, soil, and other debris are piled on top of it [image credit: NASA Earth Observatory, images by Lauren Dauphin, using Landsat data from the USGS. Story by Adam Voiland, with information from Jeff Kargel (Planetary Science Institute), Cameron Watson (University of Arizona), Andreas Kääb (University of Oslo), and Umesh Haritashya (University of Dayton)]

- Generally, ice-dammed lakes like this are unstable and do not last for more than one season; most drain slowly and do not to cause any problems. But sometimes the ice dams collapse suddenly or lake water spills over the dam, causing fast-moving, dangerous floods. Because of this, scientists are conducting frequent ground surveys near Shishpar and analyzing satellite imagery daily.

- In a release on April 27, the Gilgit-Baltistan Disaster Management Authority indicated that the risk of a damaging flood had decreased due to falling lake levels. In an earlier release, the group noted that hot weather in the summer could cause rapid melting and hazardous overflows, and they outlined several steps to reduce the risk of a flood disaster in communities downstream. In the case of a severe flood, a nearby section of the Karakoram Highway, large numbers of homes in the village of Hasanabad, important irrigation channels, and two power plants could all be affected.

- The glacier’s surge has already had some consequences. One nearby power station went offline due to a lack of incoming water. Also, a key pathway that miners and cattle once used to cross the glacier safely became impassable. In August 2018, that change trapped cattle in summer pastures and prevented miners from reaching a work site, the Pamir Times reported.

- This is not the first time that this glacier has surged. Field research and analysis of satellite imagery indicate that Shishpar also surged in 1904-1905, 1972-1976, and 1993-2002.

• May 8, 2019: Following a severe drought in 2018, the unusually wet winter and spring of 2019 has swollen Iraq’s rivers, lakes, and reservoirs. Since January, many parts of the country have seen rainfall amounts that are double or triple the norm. 50)

- All of that water has to go somewhere. In northern Iraq, a principal destination has been the lake behind Mosul Dam, the largest reservoir in the country. According to data collected by the CNES/NASA Jason-2 and Jason-3 satellites, water levels in April 2019 at the reservoir reached the highest levels in at least a decade.

LS82019_Auto43

Figure 57: These observations and analyses were recorded by the Global Reservoir and Lake Monitor (G-REALM), a project sponsored by NASA and the U.S. Foreign Agricultural Service. FAS uses such water level measurements to assess irrigation potential and long-term drought conditions around the globe (image credit: NASA Earth Observatory, image by Joshua Stevens, using JASON-2 and JASON-3 altimetry data from NOAA and the G-REALM project)

LS82019_Auto42

Figure 58: The Operational Land Imager (OLI) on Landsat 8 acquired images of the reservoir in April 2015 and April 2019. Beyond the water levels, notice how much greener the land surface was in 2019. Note also how much suspended sediment flowed into the northern end of the reservoir through the Tigris River [image credit: NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey, Story by Adam Voiland, with information and factchecking from Charon Birkett (University of Maryland), William Empson (U.S. Army), and William Baker (USDA FAS)]

- Government officials and engineers monitor the stability of Mosul Dam since some areas beneath it contain gypsum, a water-soluble rock. To strengthen the dam, Iraq’s Ministry of Water Resources has been injecting cement into the foundation to replace any gypsum that has dissolved. When these maintenance operations were halted in 2014 due to a takeover of the dam by ISIS militants, scientists used radar to observe whether the dam was sinking.

- In 2016, with the Iraqi government back in control of the dam, the Ministry of Water Resources enlisted an Italian firm, Trevi, and the U.S. Army Corps of Engineers to begin a three-year intensive program to purchase new equipment and aggressively treat the rock foundation with cement to ensure the stability of the dam.

LS82019_Auto41

Figure 59: The upstream Mosul Dam Lake image acquired with OLI on Landsat-8 on 25 April 2015 (image credit: (image credit: NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey, Story by Adam Voiland)

LS82019_Auto40

Figure 60: The upstream Mosul Dam Lake image acquired with OLI on Landsat-8 on 04 April 2019 (image credit: NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey, Story by Adam Voiland)

• May 7, 2019: Over the past 20 years, a lot of things have changed. But through all those changes, there’s been the same place to find daily images of our planet: Earth Observatory. 51)

Figure 61: In two decades, NASA’s daily Earth magazine has shared 15,000 images, showing the latest satellite imagery, unique visuals, global maps, and easy-to-understand data visualizations so you can have a better understanding of our dynamic planet (video credit: NASA Earth Observatory: where every day has been Earth Day since April 1999) 52)

• April 23, 2019: In October 1946, thirteen engineers arrived at a small U.S. Army air field at the edge of a dry lake bed in Southern California to work on the experimental X-1 supersonic aircraft. They were some of the first people to work at what would became Armstrong Flight Research Center, one of NASA’s centers for flight research and operations. 53)

- The site for Armstrong and the surrounding Edwards Air Force Base was chosen because Rogers Dry Lake offers an expanse of land so smooth and flat that it can be used for emergency landings. As Armstrong has been a major site for testing experimental aircraft, the natural runways on the lake bed have saved hundreds of lives and many aircraft.

- Formerly known as Dryden Flight Research Center, Armstrong has been the site of several aviation firsts. In 1947, the X-1 became the first piloted aircraft to go faster than the speed of sound. Armstrong also developed the hypersonic X-15, a rocket-powered plane that holds the record for being the fastest manned aircraft to ever fly. Armstrong tested the first electronically controlled aircraft—the F-8 DFBW—in 1972. And for many years, Armstrong hosted two extensively modified Boeing 747s that carried the Space Shuttle.

- Several aircraft based at Armstrong have played key roles in studying Earth. The modified DC-8 jetliner flies a variety of earth science missions, such as Operation IceBridge. The high-altitude ER-2 carries science instruments that have collected data on the ozone hole, hurricanes, and wildfires. Other Armstrong-based aircraft that conduct Earth science research include a Gulfstream C-20A, a B200 King Air, an autonomous Global Hawk, and a remotely piloted Ikhana Predator B.

LS82019_Auto3F

Figure 62: OLI on Landsat-8 captured this image of Edwards Air Force Base and Armstrong Flight Research Center on October 18, 2018. The image showcases the world’s largest compass rose, which was placed there to help pilots land even if navigational equipment fails. Several “drawn on” runways are also visible crisscrossing the surface of the dry lake. The main concrete runway at Edwards Air Force Base, in combination with the lakebed, offers pilots one of the longest and safest runways in the world (image credit: NASA Earth Observatory, images by Lauren Dauphin, using Landsat data from the U.S. Geological Survey. Story by Adam Voiland)

• On 8 April 2019, the Landsat-8 satellite acquired a scene of contrasts: a fire surrounded by ice. Between chunks of frozen land and lakes in the Magadan Oblast district of Siberia, a fire burned and billowed smoke plumes that were visible from space. 54)

- Not much is known about the cause of the fire. Forest fires are common in this heavily forested region, and the season usually starts in April or May. Farmers also burn old crops to clear fields and replenish the soil with nutrients; such fires occasionally burn out of control. Land cover maps, however, show that this fire region is mainly comprised of shrublands, not croplands.

LS82019_Auto3E

Figure 63: This image and the image of Figure 64 show the fire east of the town of Evensk, as observed by OLI (Operational Land Imager) on Landsat-8 of NASA. The satellite imagery indicates that the fire has been burning since at least April 6. According to Russia’s Federal Forestry Agency, one fire of nearly 4,000 hectares (10,000 acres) was reported on 8 April on forest lands in the Magadan Oblast region (image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Text by Kasha Patel)

LS82019_Auto3D

Figure 64: Overview of the Magdan Oblast region with the town of Evensk in the far east of Siberia, 8 time zones east of Moscow (image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Text by Kasha Patel)

• April 2, 2019: As the world’s earliest known civilization developed in Mesopotamia... as Genghis Khan worked to create the largest contiguous land empire in history... as the Ottomans occupied European and Asian lands for nearly 600 years... each empire had one thing in common. They all set up camp on a small plot of land in what is now the Kurdistan region of northern Iraq: the Erbil Citadel. 55)

- The Citadel is possibly the oldest continuously occupied human settlement on Earth, dating back at least 6,000 years. Its extensive history is embedded in its own ground. It sits on an oval-shaped mound that stands about 32 meters (100 feet) high, built up from dirt, debris, and collapsed mud houses from previous human settlements. This ancient town within the heart of Erbil was added to the World Heritage List in 2014. It covers just over 10 hectares (24 acres).

- The Citadel is today surrounded by tall 19th-century walls, which once gave it an appearance of a formidable fortress. Within those walls, a maze of narrow alleyways and culs-de-sac branch out from the main gate and connect courtyard houses and public buildings—street patterns carried over from the Ottoman period.

LS82019_Auto3C

Figure 65: This image of Erbil Citadel and its surroundings was acquired on November 20, 2018, by OLI on the Landsat-8 satellite. From above, Erbil Citadel appears at the center of what looks like a wagon wheel—perhaps more than a coincidence, as evidence suggests humans may have been living there during the Ubaid period, when humans invented the wheel. The Citadel is surrounded by the capital of the Iraqi Kurdistan autonomous region (image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey. Story by Kasha Patel)

- The Citadel is today surrounded by tall 19th-century walls, which once gave it an appearance of a formidable fortress. Within those walls, a maze of narrow alleyways and culs-de-sac branch out from the main gate and connect courtyard houses and public buildings—street patterns carried over from the Ottoman period.

- Today, only one family lives within the walls, an arrangement by Kurdish officials in order to preserve the Citadel's title of “continuously occupied.” The town currently contains one mosque and various museums open for business. Several organizations are working to rehabilitate and bring new activities to the Citadel.

• March 26, 2019: The honking, fluttering spectacle of tens of thousands of snow geese in flight is a breathtaking sight—like watching “snowflakes drifting lazily across the azure sky,” in the words of naturalist and historian George Bird Grinnell. It is also a sight that would be far less common in the Sacramento Valley if the region was not one of the largest rice-growing areas in the United States. 56)

- In Grinnell’s day, the meandering Sacramento River wound through marshy wetlands in the valley, becoming what amounted to an inland sea during big winter and spring floods. Sacramento has the scars to prove it; the city has routinely suffered through devastating floods since the 1840s.

- Decades of development and levee construction eventually tamed the worst of the flooding, but it took the wetlands with it. According to one estimate, the Sacramento Valley lost more than 90 percent of its wetlands to farming and development.

- However, one crop—rice—helps preserve some of the valley’s watery history. Growing rice requires the flooding of fields for several months in the summer. And since crop burning was restricted by the state of California in the 1990s, many rice growers flood their fields in winter to soften the stubble and makes it easier to till in the spring. This has extended the period when standing water covers parts of the Sacramento Valley to about eight months, explained Daniel Sousa, a researcher at Columbia University working on a project to monitor rice farming by satellite.

LS82019_Auto3B

Figure 66: OLI on Landsat-8 acquired this false-color image using a combination of shortwave infrared, near infrared, and visible light (bands 6-5-4) on 26 December 2018. The image highlights the patchwork of flooded rice fields along the Sacramento and Feather Rivers. Inundated fields appear dark blue; vegetation is bright green. A series of raised levees form the grid pattern between the fields (image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey, story by Adam Voiland)

- Note that some of the flooded fields may be flooded due to winter rains. Though rainfall was below average in December 2018, water tends to pool up easily in the clay-rich, impermeable soils in this area after storms. Circular Sutter Buttes, an eroded volcanic lava dome, is visible in the center of the image. Some of the flooded areas, particularly just north of Sutter Buttes, are marshland. These areas generally appear darker than the rice fields.

LS82019_Auto3A

Figure 67: This photo shows a massive flock of snow geese congregating in a rice field in the Sacramento Valley on February 22, 2014, an unusually dry year (image credit: NASA Earth Observatory, Photographs by Leslie Morris and Brian Baer for the California Rice Commission (used with permission). Story by Adam Voiland)

- Rice fields provide food and a resting place for nearly 230 wildlife species. According to the California Rice Commission, they are the source of 60 percent of the food for 7 to 10 million ducks and geese that migrate along the Pacific Flyway each winter.

- “We often hear of land use being at odds with the natural rhythms and legacy of ecosystems,” said Sousa. “This is a nice case where farming rice on a large scale is actually returning the landscape to a more natural state.”

LS82019_Auto39

Figure 68: The photo below shows a large flock of geese in rice fields near Willow, California, on 13 December 2012. The largest flocks of birds congregate in rice fields during dry years, explained Jim Morris of the California Rice Commission. Snow geese typically spend winters in southern California and summers in Canada and Alaska (image credit: NASA Earth Observatory, Photographs by Leslie Morris and Brian Baer for the California Rice Commission (used with permission). Story by Adam Voiland)

- Landsat 8 is especially useful for tracking rice crops because its Thermal Infrared Sensor (TIRS) can distinguish the cool temperatures of a flooded field from the warmer temperatures of dry land. By analyzing Landsat thermal imagery of flooded fields and comparing it to ecological data on the resting and feeding patterns, researchers found that late-March and April—peak migration season—are particularly difficult periods for migrating birds. The amount of flooded habitat has been shrinking during the past 30 years. As little as 3 percent of the landscape is flooded during April, according to one recent study.

- BirdReturns, a program managed by The Nature Conservancy and California Rice Commission that pays some farmers to keep fields flooded during this key part of the year, helps address this problem. Fields participating in the program since 2014 have had 40 times more birds in March than neighboring fields, according to The Nature Conservancy.

Figure 69: NASA Landsat Helps Feed the Birds: Over the last century, California's Central Valley has lost 95% of the wetlands habitat, which is needed for the shorebirds while on their migration. The solution involves big data, binoculars and rice paddies. The Nature Conservancy of California has in innovated program called Bird Returns that works with rice farmers to create temporary wetlands just during the weeks that they are needed (video credit: NASA Goddard)

• March 19, 2019: Although floods hit Nebraska the hardest, March 2019 brought unusually swollen, ice-choked rivers to Iowa as well. With the state blanketed with snow and just beginning to thaw out from an unusually cold February, many of Iowa’s waterways were capped with thick ice in the beginning of the month. 57)

- After an intense “bomb cyclone” delivered heavy rain and a blast of warm air, the ice began to break up and flow downstream. However, ice chunks tend to clump together in sharp meanders or behind bridges, slowing the flow of water and creating “ice jams.” In addition to exacerbating flooding, ice jams can cause significant damage as chunks of ice grind against levees, dams, homes, and other infrastructure.

- OLI on Landsat-8 acquired this false-color image (bands 6-5-4) of flooding around Des Moines on March 18, 2019. For comparison, the second image shows the same area in March 2018. Large amounts of water (dark blue) and ice (light blue) had backed up behind the Saylorville and Red Rock dams. Of the waterways in the Des Moines area, the Raccoon River faced some of the most serious flooding, partly because its sharp meanders make it especially prone to ice jams.

LS82019_Auto38

Figure 70: OLI image of Des Moines, Iowa region, acquired on 15 March 2018 (image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey. Story by Adam Voiland)

LS82019_Auto37

Figure 71: OLI image of Des Moines, Iowa region, acquired on 18 March 2019 (image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey. Story by Adam Voiland)

- The image of Figure 72, acquired by Landsat on the same date, shows an ice jam in the Iowa River near Iowa Falls. Volunteers came together to build sandbag barriers around wells and other key infrastructure as floodwater and ice chunks as large as dinner tables invaded roads and yards in the town, according to local news reports.

LS82019_Auto36

Figure 72: Landsat image showing an ice jam in the Iowa River near Iowa Falls acquired with OLI on 18 March 2019 (image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey. Story by Adam Voiland)

• March 12, 2019: A major part of Brazil’s economy depends on a grass-fed animal—the cow. Between 1970 and 2006, Brazil doubled its cattle farm productivity, increasing income and helping with global food demands. Today, it is one of the largest cattle producers in the world. But cattle production has come with an environmental cost: the creation of pastures is a main driver for Amazon deforestation. 58)

Figure 73: Pastureland in Brazil between 1982 and 2018, nearly 31% of Brazilian territory was used as pastureland (video credit: Joshua Stevens, using data courtesy of Arantes, A. E., et al. (2018), story by Kasha Patel)

- A major part of Brazil’s economy depends on a grass-fed animal—the cow. Between 1970 and 2006, Brazil doubled its cattle farm productivity, increasing income and helping with global food demands. Today, it is one of the largest cattle producers in the world. But cattle production has come with an environmental cost: the creation of pastures is a main driver for Amazon deforestation.

- Researchers have recently been using NASA satellite data to monitor the spread and quality of pasturelands and to estimate how many cattle those lands can support. The recent study shows that many existing pasturelands can actually sustain more cattle.

- “The main goal of our work is to produce more meat per hectare,” said Laerte Ferreira of the Federal University of Goiás (Brazil), whose work has been supported by the Gordon and Betty Moore Foundation and is part of the MapBiomas initiative. “If we can improve the use of these pastures, we can avoid more deforestation and promote livestock in a more sustainable way.”

- The animation of Figure 73 shows the expansion of Brazilian pasturelands from 1985 to 2017; it is based on an analysis of more than 200,000 Landsat images by Ferreira's group. Note how pasturelands have expanded towards the Amazon in the north. Approximately 264 million hectares (652 million acres) were mapped as pasture sometime between 1985 and 2017, which is around 31 percent of Brazilian territory. (This analysis does not account for losses of pastureland.)

- As it turns out, many of these pasturelands are older or not well maintained, which leads to faster degradation. Degraded pastures tend to have bare soil, more invasive species, and less nutrients to support livestock. They also retain less carbon in the soil and contribute more to greenhouse gas emissions.

LS82019_Auto35

Figure 74: This map of 2015 highlights areas where the land can support more cattle. Most noticeably, the pastures in the Pampas region in the south can support as much as three times more cattle per hectare. (One cattle unit is estimated at 450 kilograms, or 990 pounds, per hectare.) The information was calculated by estimating the amount of cows on the land, the vegetative health of the pasturelands as observed from the Normalized Difference Vegetation Index (NDVI) and primary productivity values from NASA satellites, and a typical cow's foraging needs. These maps provide only an estimation, as limitations of soil, topography and infrastructure need to be considered (image credit: NASA Earth Observatory, image by Joshua Stevens, using data courtesy of Arantes, A. E., et al. (2018), story by Kasha Patel)

- Ferreira’s team found that the northeastern and center-west portions of the country showed the most land degradation. Several other regions showed healthy pasturelands, including many that are underutilized.

- About 45 percent of the pastures show signs of degradation, said Ferreira, but the government is sponsoring plans to revive those lands. “If we can restore the degraded pasture and bring back livestock, we can avoid more deforestation,” said Ferreira.

- Brazil’s Low-Carbon Agriculture plan aims to rehabilitate 15 million hectares of degraded pastures and introduce less invasive agricultural practices by 2020. The plan will not only make these lands more viable for cattle grazing, but also greatly reduce greenhouse gas emissions.

• March 11, 2019: It’s reasonable to think that Jupiter—a gaseous planet more than 11 times the diameter of Earth—would have little in common with our home. But it turns out that the motion of fluids on both planets is governed by the same laws of physics. An eddy on Earth looks a lot like an eddy on Jupiter. 59)

- Scientists think Jupiter has three distinct cloud layers. The left image of Figure 75 shows ammonia-rich clouds swirling in the planet’s outermost layer. Citizen scientists Gerald Eichstädt and Seán Doran created the image using data acquired by the JunoCam imager on NASA’s Juno spacecraft in December 2018. They applied a series of image processing steps to highlight details that would be difficult for the human eye to discern.

- According to Alberto Adriani, a Juno mission co-investigator from the Institute for Space Astrophysics and Planetology, the eddies in Jupiter’s clouds reflect disturbances in the atmosphere caused by the planet’s fast rotation and by higher temperatures deeper in the atmosphere. He compares the phenomenon to rapidly rotating a fluid while boiling it.

LS82019_Auto34

Figure 75: The similarities are especially evident in these images showing swirls in Jupiter’s atmosphere and in Earth’s Baltic Sea. “This is all about fluids moving around on a rotating body,” said Norman Kuring of NASA’s Goddard Space Flight Center. Kuring described the patterns of flow as a combination of laminar (following a smooth path) and turbulent (uneven and chaotic). Flows can be characterized using numbers named for famous physicists, such as Reynolds, Rossby, and Rayleigh. But you don’t need a textbook knowledge of fluid dynamics to appreciate its consequences. “Out of all the complexity flows beauty, whether it be images of Earth, Jupiter, or your coffee cup when you pour in the cream,” Kuring said (image credit: NASA Earth Observatory image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Jupiter Juno imagery courtesy of NASA/SwRI/MSSS via Gerald Eichstädt and Seán Doran, story by Kathryn Hansen)

- The patterns in Jupiter’s atmosphere appear similar to those in Earth’s oceans. The Operational Land Imager (OLI) on Landsat-8 acquired the right image of Figure 75 on July 18, 2018. This natural-color image shows a green phytoplankton bloom tracing the edges of a vortex in the Baltic Sea. In this medium—Earth’s ocean—turbulent processes are important for moving heat, carbon, and nutrients around the planet. Models that accurately represent these processes are critical for understanding weather in the air and sea.

- While scientists continue exploring the complexities of Earth’s oceans, astronomers are learning more about Jupiter’s complex composition—important for understanding how our solar system and other solar systems formed.

- “In interpreting what we see elsewhere in the solar system and universe, we always compare with phenomena that we already know of on Earth,” Norman Kuring said. “We work from the familiar toward the unknown.”

• March 6, 2019: As another round of severe rainstorms doused California in late February 2019, the Russian River approached record levels and brought catastrophic flooding. More than 2,000 businesses and homes in Sonoma County were flooded and the river valley towns of Guerneville and Monte Rio were turned into islands, temporarily cut off from all land transportation. 60)

- Scientists from the National Weather Service and the Scripps Institution of Oceanography declared an atmospheric river event, one of several that has brought soaking rain and heavy snowfall to California this winter. Off the West Coast of the United States, an atmospheric river is often referred to as a “pineapple express,” because the storm systems and moisture often flow from the tropical Pacific near Hawaii. Such jets of moist air can run into low-pressure weather systems and deliver bursts of precipitation for days at a time.

- Meteorologists reported widespread rainfall totals above 5 inches (13 cm), with the town of Venado, California, seeing 21.36 inches (54.25 cm) in 48 hours. According to a report from NBC Bay Area meteorologist Jeff Rainieri, the mountains around Guerneville saw February rainfall that was more than 400 percent of normal. The Russian River crested at 45.38 feet (~14 m) in Guerneville, the highest level since 1995.

LS82019_Auto33

Figure 76: On 28 February 2019, OLI on Landsat-8 acquired a false-color view (bands 6-5-4) of flooding along the Russian River. It shows flood water west of Santa Rosa, near a point where the river takes a hard turn to the west toward Sebastopol and Guerneville (both under cloud cover). For comparison, the left image shows the area on January 27, 2019. Flood waters appear blue; vegetation is green; and bare ground is brown (image credit: NASA Earth Observatory, images by Lauren Dauphin, using Landsat data from the USGS, story by Mike Carlowicz)

• March 4, 2019: More than two centuries ago, Captain James Cook sailed around the Antarctic circle searching for the Southern Continent. Instead, he landed on an isolated island about 1,300 kilometers (800 miles) southeast of the Falkland Islands in the Southern Ocean. He became the first recorded explorer on the remote island, which he claimed for Great Britain and named the “Isle of Georgia” for King George III. 61)

- But the island was “savage,” according to Cook. As he described in a manuscript, “Pieces were continually breaking off, and floating out to sea; and a great fall happened while we were in the bay, which made a noise like a cannon. The inner parts of the country were not less savage and horrible.” Cook began mapping the coastline, but did not bring the ship into the island due to the dangerous conditions.

- South Georgia is still known for its rugged terrain and inhospitable environment for humans. The island has 11 peaks rising more than 2,000 meters (6,500 feet) above sea level. The mountains shield the north and east coast from prevailing winds that blow out from the Southern Ocean and Antarctica. The island also supports 161 glaciers, several that are in retreat.

LS82019_Auto32

Figure 77: OLI on Landsat-8 acquired this image on December 25, 2018 showing a clear view of South Georgia and the South Sandwich Islands (image credit: NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey; story by Kasha Patel)

- The island provides a unique ecosystem for wildlife. South Georgia waters are highly productive, supporting large populations of krill, which feed on phytoplankton and provide food for many marine predators. The steep terrain above and below the water line includes deep bays that shelter substantial populations of penguins, seals, and the globally threatened wandering albatross. Scientists have collected more than 30 years of population data on seabirds and marine mammals at South Georgia—one of the longest and most detailed scientific datasets in the Southern Ocean.

LS82019_Auto31

Figure 78: This image gives a sense of the topography by overlaying the Landsat-8 data of 25 December 2018 on a digital elevation model from the Shuttle Radar Topography Mission (SRTM). The Novosilski and Brøgger Glacier are approximately 13 km and 11 km long, respectively (image credit: NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey; story by Kasha Patel)

LS82019_Auto30

Figure 79: Detail image of the southern tip of the island. The discolored water near the shore is possibly due to phytoplankton blooms or sediments from the island mixing into the sea. The southernmost point has the quirky name “Cape Disappointment,” a label given by Cook when he realized he had not reached Antarctica (image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from the U.S. Geological Survey, story by Kasha Patel)

• February 27, 2019: In December 2016, the Menindee Lakes of New South Wales were nearly brimming with water. More than two years later, these Australian lakes are almost desiccated. 62)

Figure 80: These satellite images show the dwindling water levels of the Menindee Lakes, a chain of freshwater lakes located 110 kilometers (70 miles) southeast of Broken Hill. The shallow natural depressions were developed into water storage by the Australian government to manage river flows. The images were acquired by the Operational Land Imager on Landsat-8 on January 27, 2017, February 15, 2018, and February 2, 2019 (image credit: NASA Earth Observatory, image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey. Story by Kasha Patel)

- Water levels often fluctuate as the basins collect precipitation or flood water. Evaporation accounts for about 400 gigaliters of water loss from the lakes every year. Other times the water is released into the nearby Darling River by the New South Wales government. During drought, when less water is coming into the lakes, the basins tend to be drier.

- Lake Menindee is the largest of the lakes. But river managers have been keeping as much water as possible upstream in Lake Wetherell and Lake Panamaroo, which supply water to Broken Hill and local communities.

- Recent years have brought exceptional drought to the area. New South Wales has faced extremely hot temperatures and low precipitation, causing one of its worst droughts on record.

- The Lower-Darling River has been experiencing “extreme low inflows” of water from the Menindee Lakes since August 2018. As of 18 February 2019, the Lower-Darling’s storage level was 1 percent. Water has stopped flowing in parts of the river.

- Public concerns drastically increased when millions of fish were found floating belly up along the Darling River on three separate occasions in January 2019. The massive fish kills stemmed from a series of events. As water levels fell, the river stopped flowing, and temperatures were high—creating ideal conditions for blue-green algae to bloom. When a cold front swept through the area and killed the algae, the population of bacteria that feeds on the algae then blossomed. The bacteria consumed most of the available oxygen in the water, causing the fish to suffocate. Some sources say the massive fish kills were partly due to how the Menindee Lakes are managed, while others blame global warming and drought.

• February 23, 2019: If you were to stand in the middle of the mines of Brazil’s Carajás Mountains (Serra dos Carajás), the dusty red terrain could be mistaken for a Martian landscape. Yet in the images above, indicators of human presence are everywhere. Excavator trucks dig in the deep pits, while off-road trucks move hundreds of tons of ore along dirt roads. This is among the world’s largest iron ore mining operations. 63)

- Viewed from space, you get a sense of how the Carajás mines fit into the wider landscape of the Amazon forest. In a scene acquired by the Operational Land Imager (OLI) on Landsat-8 on July 16, 2018, the red-brown earth contrasts starkly with the greens of the surrounding Carajás National Forest.

- The detailed image shows the largest of these mines, the Serra Norte complex. The terraced appearance is a result of the open pit mining method, in which layers are excavated one at a time. Nine iron ore deposits exist along the Serra Norte (Northern Range). According to a 2013 study, mining at four of Serra Norte’s main pits had produced 1.2 billion tons of high-grade iron ore.

- Most of the metallic mineral deposits among the ridges and plateaus of the Carajás Mountains and elsewhere in the Amazon are found in areas of rock that date back to the earliest part of Earth’s history. From the time that Earth’s surface solidified to about 570 million years ago, in the Precambrian, metals could more easily rise from deep in the planet and close to the surface. In addition to iron ore, the region is also rich in manganese, copper, tin, aluminum, and gold.

- Scientists have been working to better assess how mining affects deforestation of the Amazon—the world’s largest remaining tropical forest—as mineral production has increasing value to the Brazil’s economy.

LS82019_Auto2F

Figure 81: The red-brown earth exposed by open pit mines contrast with the greens of the surrounding Amazon forest. The image was acquired on 16 July 2018 with OLI (image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Story by Kathryn Hansen)

LS82019_Auto2E

Figure 82: Overview of a Brazilian mine region in Amazon Forest acquired on July 16 2018 with OLI ((image credit: NASA Earth Observatory, image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Story by Kathryn Hansen)

• February 20, 2019: Cracks growing across Antarctica’s Brunt Ice Shelf are poised to release an iceberg with an area about twice size of New York City. It is not yet clear how the remaining ice shelf will respond following the break, posing an uncertain future for scientific infrastructure and a human presence on the shelf that was first established in 1955. 64)

- The cracks are apparent by comparing these images acquired with Landsat satellites. The Thematic Mapper (TM) on Landsat-5 obtained the image of Figure 83 on 30 January 1986. The image of Figure 84, from the Operational Land Imager (OLI) on Landsat-8, shows the same area on 23 January 2019.

LS82019_Auto2D

Figure 83: Antarctica's Brunt Ice Shelf acquired with the Thematic Mapper (TM) on Landsat-5 on 30 January 1986 (image credit: NASA Earth Observatory image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Story by Kathryn Hansen, with image interpretation by Chris Shuman)

LS82019_Auto2C

Figure 84: Antarctica's Brunt Ice Shelf acquired with OLI on Landsat-8 on 23 January 2019. Cracks growing across the ice shelf are poised to release an iceberg about twice size of New York City (image credit: NASA Earth Observatory image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Story by Kathryn Hansen, with image interpretation by Chris Shuman)

- The crack along the top of the 23 January 2019 image of Figure 84 —the so-called Halloween crack—first appeared in late October 2016 and continues to grow eastward from an area known as the McDonald Ice Rumples. The rumples are due to the way ice flows over an underwater formation, where the bedrock rises high enough to reach into the underside of the ice shelf. This rocky formation impedes the flow of ice and causes pressure waves, crevasses, and rifts to form at the surface.

LS82019_Auto2B

Figure 85: The detailed view of Figure 84 shows this northward expanding rift coming within a few kilometers of the McDonald Ice Rumples and the Halloween crack (image credit: NASA Earth Observatory image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Story by Kathryn Hansen, with image interpretation by Chris Shuman)

- When the Halloween crack cuts all the way across, the area of ice lost from the shelf will likely be at least 1700 km2 (660 square miles). That’s not a terribly large iceberg by Antarctic standards—probably not even making the top 20 list. But it may be the largest berg to break from the Brunt Ice Shelf since observations began in 1915. Scientists are watching to see if the loss will trigger the shelf to further change and possibly become unstable or break up.

- “The near-term future of Brunt Ice Shelf likely depends on where the existing rifts merge relative to the McDonald Ice Rumples,” said Joe MacGregor, a glaciologist at NASA’s Goddard Space Flight Center. “If they merge upstream (south) of the McDonald Ice Rumples, then it’s possible that the ice shelf will be destabilized.”

- The growing cracks have prompted safety concerns for people working on the shelf, particularly researchers at the British Antarctic Survey’s Halley Station. This major base for Earth, atmospheric, and space science research typically operates year-round, but has been closed down twice in recent years due to unpredictable changes in the ice. The station has also been rebuilt and relocated over the decades. The detailed image (Figure 85) shows the station’s location (Halley IV) until it was closed in 1992. In 2016-2017, the Halley VI station was relocated to a safer location (Halley VIa) upstream of the growing crack.

- Calving is a normal part of the life cycle of ice shelves, but the recent changes are unfamiliar in this area. The edge of the Brunt Ice Shelf has evolved slowly since Ernest Shackleton surveyed the coast in 1915, but it has been speeding up in the past several years.

- “We don’t have a clear picture of what drives the shelf’s periods of advance and retreat through calving,” said NASA/UMBC glaciologist Chris Shuman. “The likely future loss of the ice on the other side of the Halloween Crack suggests that more instability is possible, with associated risk to Halley VIa.”