Minimize Electron

Electron Launcher Missions of Rocket Lab

Electron   Launch   Mission Status   References

Rocket Lab is a US aerospace company with HQs in Los Angeles, CA, with a wholly owned New Zealand subsidiary. The company aims to develop low-mass, cost-effective commercial rocket launch services. The Electron Program was founded on the premise that small payloads such as CubeSats require dedicated small launch vehicles and flexibility not currently offered by traditional rocket systems. Rocket Lab's mission is to remove the barriers to commercial space by providing frequent launch opportunities to LEO (Low Earth Orbit). 1) 2) 3)

Some background:

Rocket Lab was founded and incorporated in 2006 by New Zealander Peter Beck, the company's CEO (Chief Executive Officer) and CTO (Chief Technical Officer). Internet entrepreneur and fellow New Zealander Mark Rocket was the seed investor and co-director from 2007 to 2011.

Rocket Lab was started in Auckland by New Zealander Peter Beck. In 2013, the company began expanding globally and established its headquarters in Los Angeles. Operations in Auckland continue to support the private orbital launch site Rocket Lab is currently constructing on New Zealand's Mahia Peninsula. The Mahia launch site reaches the widest range of orbital azimuths of any launch site globally, and its remote location will enable rocket launches at an unprecedented frequency. 4)

The company has a rich history of developing propulsion systems and launch vehicles for a multitude of government and commercial customers. Rocket Lab has successfully launched over 80 sounding rockets and in 2009 became the first private company to reach space from the Southern Hemisphere.

The first launch of the Ātea-1 (Māori for 'space') suborbital sounding rocket occurred in late 2009. The 6 m long rocket with a mass of 60 kg was designed to carry a 2 kg payload to an altitude of 120 km. It was intended to carry scientific payloads or possibly personal items. Ātea-1 was successfully launched from Great Mercury Island (New Zealand) near the Coromandel Peninsula on 30 November 2009. The rocket was tracked by GPS uplink to the Inmarsat-B communications satellite, which permitted verification of payload apogee above the Kármán line; it touched down approximately 50 km downrange.

In 2013, the company began development of the two-stage Electron orbital rocket, designed to orbit small (or "mini") satellites. The effort included development of the Rutherford engine, named for the New Zealand-born British physicist Ernest Rutherford, to power Electron. Rutherford used brushless DC motors powered by lithium polymer batteries to power its turbopump, replacing the usual gas generator. Rocket Lab announced its Electron plans to the world in 2015. NASA awarded the company a Venture Class Launch Services contract on October 31, 2015. 5)

Electron Stage Testing: Electron was designed to orbit small satellites for about $4.9 million per mission. The design adopted innovative carbon composite tanks to hold both the kerosene fuel and the cryogenic liquid oxygen oxidizer. Nine Rutherford engines, each producing 1.739 tons of sea-level thrust at a 303 second vacuum specific impulse, powered the first stage. A single Rutherford Vacuum Engine powered the second stage, producing 2.268 tons thrust at a 333 second specific impulse.

Electron has a mass of 12.55 tons at liftoff, rising on 15.65 tons of thrust. It is 1.2 m in diameter and stands stand 17 m tall. Its first stage is 12.1 m tall, the second stage 2.4 m, and the payload fairing is 2.5 m in length. The rocket is designed to lift 150 kg payloads to a 500 km sun-synchronous orbit.

After the company sought and received U.S. capital, it established headquarters in Los Angeles, California and announced plans for some manufacturing to be done in the U.S. As the first launch approached, however, production, testing, and engineering remained in Auckland, New Zealand, and a single launch site had been built on the Mahia Peninsula of New Zealand's North Island. The launch site was completed on September 27, 2016.

On March 21, 2016, Rocket Lab announced that it had qualified its Rutherford engine for flight. Development spanned two years and more than 200 engine hot fire tests. One month later, the company announced that the Electron second stage had been qualified, with test firings on the company's test stand. The first stage was qualified on December 13, 2016.

Electron Second Stage with Rutherford Vacuum Engine: Rocket Lab delivered its first Electron vehicle to Rocket Lab Launch Complex 1 at Mahia on February 16, 2017. A series of tests were planned before the rocket, named "It's a Test", would be ready to fly. It would be the first of three planned test flights before Rocket Lab begins flying payloads for paying customers.

To support the Electron project development, Rocket Lab received investment from Silicon Valley-based Khosla Venture Partners, Bessemer Venture Partners, Data Collective, Promus Ventures, as well as the aerospace company Lockheed Martin. The test program of the vehicle is scheduled to run throughout the second half of 2016 from Rocket Lab's Mahia launch site. Customers publicly announced to fly on Electron vehicle include NASA, Moon Express and Spire (Ref. 4).

On March 22, 2017, Rocket Lab announced that it had garnered $75 million in new financing, bringing its total to $148 million. It also announced that it was opening an office in Huntington Beach, California that included production floor space.

This year alone Rocket Lab has qualified both the second stage of the vehicle and the Rutherford Engine which was developed in-house specifically for use on Electron. The qualification of the engine was a major milestone for 3D printing; Rutherford is the first oxygen/hydrocarbon engine to use additive manufacturing for all primary components of its combustor and propellant supply system.

Electron Inaugural Falls Short of Orbit: Rocket Lab's Electron rocket fell short of orbit in its inaugural test launch from New Zealand on May 25, 2017. The new small launch vehicle, named "It's a Test", lifted off from Rocket Lab's Launch Complex 1 on the Mahia Peninsula of New Zealand's North Island at 04:20 UTC. The 17 m tall, 1.2 m diameter rocket, its innovative carbon composite case propellant tanks filled with kerosene and liquid oxygen, was slated to steer toward a south, south-east azimuth, rising on about 15.65 metric tons of thrust from its nine equally-innovative, electric-motor-pump-fed Rutherford engines.

Electron carried test instrumentation, rather than a revenue payload, on this test flight. The launch was not broadcast live and post-launch information was limited. Peter Beck reported that Electron had a good first stage burn, stage separation, second stage ignition, and fairing separation, but orbital velocity was not achieved. A 300 x 500 km orbit with an inclination of 83º orbit was planned.

The company did not give a cause for the failure. It did release several videos showing portions of the first stage flight. An on-board video showed a roll developing during ascent. Plans called for the first stage to burn for 2 minutes 30 seconds. Stage separation was to take place four seconds after first stage shutdown. The second stage's single vacuum-optimized Rutherford engine was then slated to fire for 4 minutes 48 seconds to reach orbital velocity.

The launch took place after several days of weather delays. Although orbit was not achieved, Peter Beck expressed satisfaction with the results of the heavily instrumented test flight- the first of three such test flights currently planned.

 


 

Electron Launch Vehicle

Rocket Lab is leading the way in delivering a one-of-a-kind service to small payload customers. Rocket Lab has sourced an extensive design and production team including Launch Vehicle, Propulsion and GNC (Guidance, Navigation and Control)engineers who are leaders in their respective fields across all disciplines of aerospace manufacture. The key to liberating the emerging small satellite industry lies in the pricing, availability, innovation and reliability of Rocket Lab's Electron launch vehicle.

The Electron launch vehicle is the first orbital launch vehicle designed and manufactured by Rocket Lab. It is a two-stage vehicle servicing the emerging small satellite market and has been designed with a high flight rate in mind. Combining the latest manufacturing technologies with standardized analysis packages and multiple domestic launch ranges, Electron is optimized for quickly launching constellations of small satellites. Capable of launching 150 kg to a nominal 500 km sun-synchronous orbit from our Rocket Lab Launch Complex in New Zealand as well as from U.S. domestic ranges, Electron provides a primary payload quality launch service at a secondary payload price. 6) 7)

Electron_Auto15

Figure 1: Illustration of the Electron launch vehicle and its elements (image credit: Rocket Lab) 8)

Electron's design incorporates a fusion of both conventional and advanced liquid rocket engine technology coupled with innovative use of electrical systems and carbon fiber composites. The launch vehicle stands 17 m tall, with a diameter of 1.2 m and a lift off mass of 13,000 kg . Electron is designed to launch a 150 kg payload to a circular sun-synchronous orbit. Overall dimensions of Electron are summarized in Table 1.

Length, diameter

17 m, 1.2 m

Stages

2

Vehicle Mass (Lift-off)

13,000 kg

Payload mass

150 kg (sun-synchronous orbit)

Payload diameter

1.08 m

Standard orbit

500 km (sun-synchronous orbit)

Propulsion – Stage 1

9 x Rutherford Engines (LOx/Kerosene), 162 kN (192 kN max), Isp = 303 s

Propulsion – Stage 2

1 x Rutherford Engine (LOx/Kerosene), 22 kN, Isp = 333 s

Material/Structure

Carbon Fiber Composite

Standard Launch Site

Mahia, New Zealand

Table 1: Electron launch vehicle overall dimensions and specifications

Electron_Auto14

Figure 2: Electron launch vehicle configuration (image credit: Rocket Lab)

Rutherford Engine: Electron's Rutherford engines are named after notable New Zealand-born Physicist Ernest Rutherford (1871 – 1937), who split the atom in 1917 and challenged scientific thinking of the day. Rocket Lab's flagship engine, the 22 kN Rutherford, is an electric turbo-pumped LOx/RP-1 engine specifically designed for the Electron launch vehicle.

Rutherford adopts an entirely new electric propulsion cycle, making use of brushless DC electric motors and high-performance lithium polymer batteries to drive its turbo-pumps.

Rutherford is also the first oxygen/hydrocarbon engine to use additive manufacturing for all primary components, including the regeneratively cooled thrust chamber, injector pumps, and main propellant valves. Stage 2 features a larger expansion ratio for improved performance in near-vacuum-conditions. All aspects of the engine are designed, developed and manufactured at Rocket Lab.

Electron_Auto13

Figure 3: Left: Rutherford electro turbo-pumped engine. Right: Rutherford Stage 1 configuration with nine engines (image credit: Rocket Lab)

 

Some design parameters:

Plug-In Payload: Electron's payload fairing is designed to decouple payload integration from the main assembly. The all–carbon composite payload fairing is designed and manufactured in-house at Rocket Lab. Rocket Lab's standard process is to integrate payloads at the launch site in a traditional manner. With the Rocket Lab "Plug-In Payload" module, the customer can choose to manage this process using his own preferred facilities and personnel. Environmentally controlled or sealed payload modules are transported back to Rocket Lab where integration with the Electron vehicle can occur in a matter of hours.

The payload fairing is a split clam shell design and includes environmental control for the payload. Characteristics of the payload fairing are summarized in Table 2. The fairing is constructed out of thin carbon composite sandwich panels on either side. Each half of the fairing is
designed to rotate on hinges mounted on Stage 2.

Length

2.5 m

Diameter (maximum)

1.2 m

Mass

44 kg (total mass)

Acoustic protection

Foam sheets

Separation system

Pneumatic unlocking, springs

Table 2: Payload fairing characteristics

 

Carbon Composite Materials: Electron makes use of advanced carbon composite materials for a strong and lightweight flight structure. Through an extensive research program, Rocket Lab has developed carbon composite tanks that are compatible with liquid oxygen, providing impressive weight savings.

A New Propulsion Cycle: Rutherford is an oxygen/kerosene pump fed engine specifically designed in-house for Electron using an entirely new propulsion cycle. Its unique high-performance electric propellant pumps reduce mass and replace hardware with software.

3D Printing: Rutherford is the first oxygen/kerosene engine to use 3D printing for all primary components.

Avionics: Rocket Lab excels at producing high-performance miniature avionics and flight computer systems. The computing nodes make use of state-of-the-art FPGA architecture, allowing massive customization of function while retaining hardware commonality.

GNC (Guidance, Navigation and Control): The GNC systems are designed with emphasis on rapid configurability resulting in faster customer turnaround times. This enables Rocket Lab to achieve its goal of providing rapid and cost-effective launch capabilities of multi-satellite constellations. Avionics flight hardware is custom designed by Rocket Lab and includes flight computers and a navigation suite incorporating an IMU (Inertial Measurement Unit), GPS receiver and S-band transmitter which transmits telemetry and video to ground operations. Guidance and control algorithms are developed with flexibility of customer payload and orbit in mind and the combination of flight hardware, software and guidance and control algorithms is fully tested and validated using hardware-in-the-loop testing frameworks.

Electron_Auto12

Figure 4: Photo of the GNC system (image credit: Rocket Lab)

RF communications: Electron provides telemetry to Rocket Lab ground stations via three S-band transmitters housed in the Stage 2 avionics bay alongside two FTS receivers and two GPS modules. The launch vehicle is equipped with the transmission and reception systems summarized in Table 3. The position of the vehicle is determined by two independent sources and transmitted to ground systems through telemetry links. Electron's Stage 2 attenuates the launch vehicle transmissions during launch pad operations, flight and up to fairing separation. The S-band transmissions at this time will not radiate into the fairing environment and affect the payload, but Rocket Lab recommends the payload is switched off during the launch to minimize the risk of interference and damage to the payload. The spacecraft RF characteristics should be such that there is no interference with the launch vehicle RF systems listed in Table 3.

Function

Command Terminate

Source Stage 2 Telemetry

GPS L1

Band

UHF

S-band

L-band

Direction

Receive

Transmit

Receive

Frequencies

400-450 MHz

2.3-2.4 GHz

1.57 GHz

Quantity

2

3

2

Table 3: Sample RF environment characteristics

Electron_Auto11

Figure 5: Electron payload fairing internal dimensions (image credit: Rocket Lab)

Electron_Auto10

Figure 6: Payload electrical interfaces (image credit: Rocket Lab)

 

The Electron Launch Vehicle and Kick Stage

August 2019: Electron is currently the only fully commercial launch vehicle in operation dedicated solely to small satellites. Electron has been designed for rapid manufacture and launch to meet the rapidly evolving needs of the growing small satellite market. Capable of launching payloads of up to 225 kg, nominal Electron missions lift 150 kg to a 500 km sun-synchronous orbit from Rocket Lab Launch Complex 1 in New Zealand. By late 2019, Rocket Lab will also launch Electron from Launch Complex 2 at the Mid-Atlantic Regional Spaceport at Wallops Flight Facility in Virginia, USA. 9)

All flight systems and launch vehicle components are designed, built and tested in-house at Rocket Lab(Figure 7).

Electron_AutoF

Figure 7: Rocket Lab Production Complex (image credit: Rocket Lab)

Kick Stage:

The apogee kick stage can execute multiple burns to place numerous payloads into different, circularized orbits. It opens up significantly more orbital options, particularly for rideshare customers that have traditionally been limited to the primary payload's designated orbit. Powered by Rocket Lab's 3D printed liquid propellant Curie engine capable of 120 N of thrust and multiple burns. 10)

Electron_AutoE

Figure 8: Photo of the Electron Kick Stage including Curie engine (image credit: Rocket Lab)

Electron_AutoD

Figure 9: Example of payloads mounted onto the Kick Stage (image credit: Rocket Lab)

On lift-off, Electron's first stage is powered by nine of Rocket Lab's in-house designed and manufactured engine, Rutherford. An electric turbo-pumped LOx/RP-1 engine specifically designed for the Electron Launch Vehicle, Rutherford adopts an entirely new electric propulsion cycle, making use of brushless DC electric motors and high-performance lithium polymer batteries to drive its turbo-pumps.

Rutherford is the first oxygen/hydrocarbon engine to use additive manufacturing for all primary components, including the regeneratively cooled thrust chamber, injector pumps, and main propellant valves. Additive manufacturing of engine components allows for ultimate manufacturability and control.

Following fuel depletion, Electron's first stage is jettisoned approximately 163 seconds following lift-off. Several seconds after this, a single vacuum optimized Rutherford engine ignites and continues to orbit carrying the Kick Stage and payloads (Figure 10). Approximately 540 seconds after lift-off, the Kick Stage and second stage separate. The Kick Stage's engine, a 3D printed, bi-propellant engine name Curie, ignites and circularizes the orbit of the Kick Stage and its payloads. At precise, pre-defined intervals, payloads are then deployed to their specified orbits.

Electron_AutoC

Figure 10: Payloads mounted on Electron's Kick Stage prior to deployment, 11 November 2018 (image credit: Rocket Lab)

Following the deployment of all payloads, the Curie engine is capable of reigniting and maneuvering the Kick Stage into a highly elliptical orbit where it is experiences significant atmospheric drag at perigee and is pulled back into the Earth's atmosphere where it is destroyed completely on re-entry. Because Electron's second stage is also left in a highly elliptical orbit, it too experiences significant drag and is destroyed on reentry. The deorbiting process for Electron's second stage can take as few as 12 days from launch. The deorbit time for the Kick Stage can be less than two hours after lift-off.

This complete process means Rocket Lab is capable of deploying customer satellites, then leaving no part of the Electron launch vehicle in orbit to add to orbital debris risk. This is crucial to ensuring the safe, responsible and sustainable use of space as a global domain as we enter an era of high-volume launch. The Kick Stage has flown on all five of Rocket Lab's orbital launches to date.

 

Photon

Since Rocket Lab's founding in 2006, the Kick Stage was always designed to be only the first step in Rocket Lab's plans for a complete spacecraft platform. In April 2019, Rocket Lab announced the Photon spacecraft. Photon takes the existing Kick Stage and incorporates high power generation, high-accuracy attitude determination and control, and radiation-tolerant avionics to provide a bundled launch-plus-satellite offering to small satellite operators. Essentially, Rocket Lab is now a single-stop mission provider, delivering a spacecraft build and launch service together. This lets small satellite operators focus on their core purpose -their payload applications - without the needless distraction of developing or procuring a spacecraft platform (Ref. 9).

By using Photon's flight-proven technology as their payload bus, small satellite operators can negate the need to scale teams of spacecraft engineers and commit capital to developing the satellite infrastructure to support their payload. This rapidly accelerates the timeframe to orbit for commercial and government small satellite customers alike, but it will also drastically reduce risk. A small percentage of small satellites are never contacted by the satellite operator following launch. In addition to the wasted time and capital of this failure phenomenon, this also adds nonfunctioning mass to orbit, further adding to orbital debris risks. By providing small satellite operators with a flexible, cost-effective and tailored spacecraft bus solution that is flight-proven, this risk can be reduced.

Photon is designed for a wide range of applications. At its most fundamental level, the platform serves as the Kick Stage, whereas advanced versions of Photon are enabled by augmenting the Kick Stage with high (kW class) power generation and precise attitude control capability. In its full performance configuration, Photon is an approximately 60 kg wet mass satellite platform that can carry up to 170 kg of useful payload, depending on orbit. Whereas in conventional launches, 30-60% of this payload capacity would be consumed by a satellite bus, the Photon platform makes the entire payload capacity of Electron useful for the customer. Photon specifications are outlined in Table 4.

Parameter/Item

Kick Stage

Standard Photon

Performance Photon

Payload mass

Up to 200 kg

Up to 170 kg

Up to 160 kg

Payload volume

Electron payload fairing

Payload power (peak)

N/A

100 W

TBS Variant(s) 1000 W

Payload energy

N/A

TBS

TBS Variant(s) 300 Wh

System voltage

N/A

28 V unregulated; regulated options available

Pointing accuracy

N/A

50 arcsec

Pointing stability

N/A

1º/s

2 arcsec/s

Slew rate

N/A

5º/s

Specific impulse

220 s

290 s

Payload data interfaces

LVDS, Ethernet, CAN RS422 / 485 Space Wire

Payload data storage

N/A

8 GB

32 GB

Communications

N/A

S-band space / ground

Space-ground via GEO

Telemetry & communication data rate

N/A

Up to 512 kbit/s

S-band: up to 512 kbit/s
GEO relay: up to 200 kbit/s

Payload data rate

N/A

Application-dependent

Design life time

Hours

LEO > 5 years

Navigation accuracy

5-10 m

Table 4: Photon spacecraft platform specifications

In summary, to meet the growing launch demand of the small satellite industry, Rocket Lab is scaling its operations to become the most prolific launch provider in the world.

According to Space News, more than 100 small satellite launch companies in various stages of development hope to provide a service to orbit too, and the risks this poses to the longevity and safety of low Earth orbit as a useful domain are great. Through the Kick Stage, and now Photon program, Rocket Lab is addressing this immediate industry challenge in a unique and sustainable way, while continuing to provide the most frequent, reliable and cost-effective dedicated access to orbit for small satellites. 11)

 

Reusability plans for Electron Rocket

• August 6, 2019: Rocket Lab has revealed plans to recover and re-fly the first stage of its Electron launch vehicle. The move aims to enable Rocket Lab to further increase launch frequency by eliminating the need to build a new first stage for every mission. 12)

- Work on Rocket Lab's Electron first stage reuse program began in late 2018, at the end of the company's first year of orbital launches. The plan to reuse Electron's first stage will be implemented in two phases. The first phase will see Rocket Lab attempt to recover a full Electron first stage from the ocean downrange of Launch Complex 1 and have it shipped back to Rocket Lab's Production Complex for refurbishment. The second phase will see Electron's first stage captured mid-air by helicopter, before the stage is transported back to Launch Complex 1 for refurbishment and relaunch. Rocket Lab plans to begin first stage recovery attempts in the coming year.

- A major step towards Rocket Lab's reusability plans was completed on the company's most recent launch, the Make It Rain mission, which launched on 29 June 2019 from Launch Complex 1. The first stage on this mission carried critical instrumentation and experiments that provided data to inform future recovery efforts. The next Electron mission, scheduled for launch in August, will also carry recovery instrumentation.

- Rocket Lab Founder and Chief Executive Peter Beck says reusing Electron's first stage will enable Rocket Lab to further increase launch frequency by reducing production time spent building new stages from scratch.

- "From day one Rocket Lab's mission has been to provide frequent and reliable access to orbit for small satellites. Having delivered on this with Electron launching satellites to orbit almost every month, we're now establishing the reusability program to further increase launch frequency," says Peter Beck. "Reusing the stage of a small launch vehicle is a complex challenge, as there's little mass margin to dedicate to recovery systems. For a long time we said we wouldn't pursue reusability for this very reason, but we've been able to develop the technology that could make recovery feasible for Electron. We're excited to put that technology into practice with a stage recovery attempt in the coming year."

 


 

Rocket Lab Facilities

Rocket Lab operates from a large combined office and factory production facility located close to Auckland Airport. The facility employs a team of engineers and technicians with production resources covering a wide scope of equipment and machinery, enabling rapid cost-effective fabrication of flight system and vehicle components (Ref. 6).

Rocket Lab operates a test facility situated within close proximity to the administration and factory facility in Auckland. Propulsion system tests primarily take place in this test facility. Rapid design, build and test schedules are made possible with such a conveniently located test cell.

Rocket Lab currently operates a private launch range at Mahia Peninsula located in Hawkes Bay, New Zealand. Future U.S. domestic launches will be occurring from both U.S. coasts via existing ranges. New Zealand's Southern Hemisphere location offers Rocket Lab clients a unique launch environment as an island nation surrounded by open water and clear air.

Electron_AutoB

Figure 11: New Zealand and its global location (image credit: Rocket Lab)

The main launch control center consists of workstations for each team, including the flight safety team, the payload team, the launch vehicle team and the launch director.

Electron_AutoA

Figure 12: Rocket Lab Launch Complex at Mahia (image credit: Rocket Lab)

Launch site coordinates: 39.26º S, 177.86º E

 

Rocket Lab selects Wallops Flight Facility for US launch site.

On 17 October 2018, US orbital launch provider Rocket Lab has confirmed it will build its first US launch pad for the Electron rocket at NASA's Wallops Flight Facility in Virginia, USA. The site will be Rocket Lab's second dedicated launch complex and builds on Rocket Lab's existing ability to launch up to 120 times annually from the world's only private launch site, Rocket Lab Launch Complex 1, in New Zealand. 13)

Launch Complex 2 will be capable of supporting monthly orbital launches and is designed to serve US government and commercial missions. The site brings Rocket Lab's global launch availability across two launch complexes to more than 130 missions per year. The option to select from two launch sites adds an extra layer of flexibility for small satellite customers, offering an unmatched ability to rapidly deploy space-based assets with confidence and precision from a preferred location.

"Accessing space should be simple, seamless and tailored to our customers' missions - from idea to orbit. Launching from a second pad builds on Rocket Lab's ability to offer the small satellite industry unmatched schedule and launch location flexibility," said Rocket Lab founder and CEO Peter Beck. "Having proven the Electron vehicle with a successful orbital launch this year, we're thrilled to expand on our ability to provide rapid, reliable and affordable access to orbit for small satellites."

"We've worked closely with the experienced and welcoming teams from Virginia Space and the Mid-Atlantic Regional Spaceport at Wallops to design a pad and processes that will enable an agile and streamlined approach to small satellite launch on US soil," he added.

Rocket Lab will work with Virginia Space to construct dedicated pad infrastructure at the site, tailored to the Electron launch vehicle. In addition to the pad, Rocket Lab will develop a Launch Vehicle Integration and Assembly Facility in the Wallops Research Park to support the simultaneous integration of up to four Electron vehicles. The facility will also contain a control room with connectivity to LC-2 (Launch Complex-2), as well as dedicated customer facilities. This new facility, combined with the purpose-built gantry located at LC-2, will provide significant and dedicated vehicle processing capability and flexibility to meet Rocket Lab's high launch cadence.

Through construction and day-to-day operations, Rocket Lab expects to create around 30 jobs immediately to directly support Launch Complex 2, with this number predicted to increase to approximately 100 as launch frequency increases. The development of Launch Complex 2 will also see Rocket Lab continue to expand Electron rocket production at the company's headquarters in Huntington Beach, California, to supply complete launch vehicles for government and commercial customers.

 



 

List of Rocket Lab Launches

The following chapters list the various launches of Rocket Lab which started on 25 May 2017.

The initial test flight, called "It's a Test", failed due to a glitch in communication equipment on the ground, but the follow-up missions, called "Still Testing", "It's Business Time" and "This One's For Pickering", delivered multiple small payloads to low Earth orbit. 14)

- Rocket Lab has completed an internal review of data from its May 25 test flight of its Electron rocket. The review found the launch had to be terminated due to an independent contractor's ground equipment issue, rather than an issue with the rocket. Rocket Lab's investigation board has identified the root causes and corrective actions.

- The FAA (Federal Aviation Administration), the primary body responsible for licensing the launch, has overseen Rocket Lab's comprehensive investigation and will review the findings.

- Rocket Lab's engineers have spent the last two months working through an extensive fault tree analysis to ensure all factors that may have influenced the outcome of the launch were thoroughly evaluated. The investigation involved the review of over 25,000 channels of data collected during the flight in addition to extensive testing at Rocket Lab facilities in California and New Zealand.

- Rocket Lab's investigation team determined the launch, named ‘It's a Test', was terminated due to a data loss time out, which was caused by misconfiguration of telemetry equipment owned and operated by a third-party contractor who was supporting the launch from Rocket Lab's Launch Complex 1.

- Four minutes into the flight, at an altitude of 224 km, the equipment lost contact with the rocket temporarily and, according to standard operating procedures, range safety officials terminated the flight. Data, including that from Rocket Lab's own telemetry equipment, confirmed the rocket was following a nominal trajectory and the vehicle was performing as planned at the time of termination.

- "We have demonstrated Electron was following its nominal trajectory and was on course to reach orbit," said Peter Beck, Rocket Lab CEO. "While it was disappointing to see the flight terminated in essence due to an incorrect tick box. We can say we tested nearly everything, including the flight termination system. We were delighted with the amount of data we were able to collect during an exceptional first test launch.

- Rocket Lab's telemetry systems provided data verifying Electrons capabilities and providing us with high confidence ahead of our second test flight. The call to terminate a launch would be tough for anyone, and we appreciated the professionalism of the flight safety officials involved."

- The telemetry data loss that led to the termination of the flight has been directly linked to a key piece of equipment responsible for translating radio signals into data used by safety officials to track the vehicle performance. It was discovered a contractor failed to enable forward error correction on this third-party device causing extensive corruption of received position data. The failure was first indicated by the fact that Rocket Lab's own equipment did not suffer similar data loss during launch. Further confirmation of the cause was demonstrated when replaying raw radio-frequency data - recorded on launch day - through correctly configured equipment also resolved the problem.

- The fix for the issue is simple and corrective procedures have been put in place to prevent a similar issue in future. No major changes to the Electron launch vehicle hardware have been required and the company has authorized the production of four additional launch vehicles as it prepares for commercial operations ahead of the test flight program. Rocket Lab's second Electron rocket, named ‘Still Testing', is undergoing final checks and preparations ahead of being shipped to Rocket Lab Launch Complex 1 shortly.

 

Launch date

Mission name

Customer

Launch site

29 June 2019

Make it Rain

Spaceflight

Launch Complex 1

05 May 2019

STP-27RD

USAF Space Test Program

Launch Complex 1

28 March 2019

DARPA R3D2

DARPA

Launch Complex 1

16 December 2018

NASA ELaNa-19

NASA

Launch Complex 1

11 November 2018

It's Business Time

Rideshare

Launch Complex 1

21 January 2018

Still Testing

Rideshare

Launch Complex 1

25 May 2017

It's a Test

Test launch

Launch Complex 1

Table 5: Completed missions of Rocket Lab in reverse order

 


 

Rocket Lab flight: Still Testing

The Still Testing mission was Rocket Lab's first orbital launch of the Electron vehicle. Electron lifted-off at 14:43 NZDT New Zealand Daylight Time) from Rocket Lab Launch Complex 1 on the Māhia Peninsula in New Zealand on 21 January 2018. The launch marked the beginning of a new era in commercial access to space.

Still Testing carried a Dove Pioneer Earth-imaging satellite for Planet, as well as two Lemur-2 satellites for weather and ship tracking company Spire.

Electron_Auto9

Figure 13: The Electron vehicle 'Still Testing' on the launch pad on Mahia Peninsula in New Zealand (image credit: Rocket Lab)

 

Launch: Rocket Lab has successfully reached orbit with the test flight of its second Electron orbital launch vehicle, Still Testing. Electron lifted-off at 14:43 NZDT on Jan. 21, 2018 (corresponding to 01:43 UTC on Jan. 20) from the Rocket Lab Launch Complex 1 on the Māhia Peninsula in New Zealand (Ref. 5). 15) 16)

Orbit: A near -circular orbit with an altitude of about 490 x 530 km and an inclination of 83º was reached — with the support of a kick stage.

A total of five scrubbed or aborted launch attempts preceded the launch. They took place on December 9, 11, 12, and 15 and on January 20.

Electron_Auto8

Figure 14: Rocket Lab Electron 'Still Testing' leaves the pad at LC-1 (image credit: Rocket Lab)

 


 

Mission status

• On January 24, 2018, Rocket Lab announced that a fourth payload, also previously unannounced, had been orbited, apparently accounting for a third object tracked in the 300 x 500 km orbit. The Rocket Lab payload, named Humanity Star, was "a geodesic sphere made from carbon fibre with 65 highly reflective panels". The spinning payload should reflect sunlight to create a flashing effect visible to ground observers (Ref. 5).

• On January 23, 2018, Rocket Lab announced that the second Electron had carried an unannounced monopropellant kick stage that fired at first apogee to insert the two Lemur-2 CubeSats into roughly 490 x 530 km, near-circular orbits. The kick stage used a 12.2 kgf restartable engine named "Curie". The Dove satellite was jettisoned into the previously announced 300 x 500 km orbit shortly after the Electron second stage shut down. The kick stage did not perform its insertion burn until T+48-49 minutes, long after Rocket Lab's webcast of the launch ended suggesting that a successful flight had been concluded when it was, in fact, still underway. A photograph of the kick stage showed that it had on-board avionics and three-axis control jets. 17)

- The kick stage was flown and tested on board the recent 'Still Testing' flight that was successfully launched on 21 January 2018 from the Rocket Lab Launch Complex 1 in New Zealand. The complex mission was a success, with the new apogee kick stage coasting in orbit for around 40 minutes before powering up and igniting Rocket Lab's new restartable liquid propulsion engine called Curie, then shutting down and deploying the payloads. With the new kick stage Rocket Lab can execute multiple burns to place numerous payloads into different orbits.

- Rocket Lab CEO and founder Peter Beck says the kick stage opens up significantly more orbital options, particularly for rideshare customers that have traditionally been limited to the primary payload's designated orbit.

- "Until now many small satellite operators have had to compromise on optimal orbits in order to reach space at an accessible cost. The kick stage releases small satellites from the constricting parameters of primary payload orbits and enables them to full reach their potential, including faster deployment of small satellite constellations and better positioning for Earth imaging," Beck says.

- The kick stage is designed for use on the Electron launch vehicle with a payload capacity of up to 150 kg and will be used to disperse CubeSat constellations faster and more accurately, enabling satellite data to be received and utilized sooner after launch.

- Equipped with a precision pointing cold gas reaction control system, the kick stage also has its own avionics, power and communications systems.

- As the proliferation of small satellites in low Earth orbit continues and the risk of collisions increases, the kick stage also offers a sustainable solution to reducing the amount of staging left to decay in orbit. The kick stage offers a much smaller system with its own green propulsion system to de-orbit the stage after mission completion, reducing the launch vehicle material left in space.

 

Payloads

The Electron vehicle carried and deployed the following payloads:

1) A Dove Pioneer Earth-imaging satellite (a 3U CubeSat) for Planet of San Francisco.

2) Two Lemur-2 satellites (2U CubeSats) for the weather and ship tracking company Spire Global Inc., San Francisco, CA.

 

Humanity Star

This mission was important to Rocket Lab because it was the first time that the company sent payloads into orbit. In addition to the commercial payloads, the launch also sent a secret payload into orbit at the behest of the company's founder, Peter Beck. He wanted to create a shared experience for all humanity by sending up a satellite that is the brightest object in the night sky. It is known as the "Humanity Star", a disco-like geodesic sphere that measures ~1 meter in diameter and will form a bright spot in the sky that will be visible to people on Earth. 18)

The Humanity Star is central to Beck's vision of how space travel can improve the lives of people here on Earth. In addition to presenting extensive opportunities for scientific research, there is also the way it fosters a sense of unity between people and nations. This is certainly a defining feature of the modern space age, where cooperation has replaced competition as the main driving force.

Electron_Auto7

Figure 15: Peter Beck, founder of Rocket Lab, is shown with the Humanity Star (image credit: Rocket Lab)

The Humanity Star is a geodesic sphere, made from carbon fiber with 65 highly reflective panels. The Humanity Star sphere spins rapidly, reflecting the sun's light back to Earth. Essentially, it creates a similar effect as a disco ball, creating the appearance of a bright flashing shooting star. Orbiting the Earth every 90 minutes and visible from anywhere on the globe, the Humanity Star is designed to be a bright symbol and reminder to all on Earth about our fragile place in the universe. 19)


Under One Sky: "For millennia, humans have focused on their terrestrial lives and issues. Seldom do we as a species stop, look to the stars and realize our position in the universe as an achingly tiny speck of dust in the grandness of it all. Humanity is finite, and we won't be here forever. Yet in the face of this almost inconceivable insignificance, humanity is capable of great and kind things when we recognize we are one species, responsible for the care of each other, and our planet, together. The Humanity Star is to remind us of this.

No matter where you are in the world, rich or in poverty, in conflict or at peace, everyone will be able to see the bright, blinking Humanity Star orbiting Earth in the night sky. My hope is that everyone looking up at the Humanity Star will look past it to the expanse of the universe, feel a connection to our place in it and think a little differently about their lives, actions and what is important.

Wait for when the Humanity Star is overhead and take your loved ones outside to look up and reflect. You may just feel a connection to the more than seven billion other people on this planet we share this ride with." Peter Beck.

 


 

Rocket Lab flight: It's Business Time

• November 01, 2018: US orbital launch provider Rocket Lab has confirmed the launch window for the upcoming 'It's Business Time' mission. The nine-day launch window will open from 11 to 19 November (NZDT), with daily launch opportunities between 16:00 - 20:00 NZDT (03:00 - 07:00 UTC). 20)

- As operations for the 'It's Business Time' launch are underway, Rocket Lab has scaled its team and facilities to enable concurrent operations for the upcoming NASA mission, scheduled to launch in December 2018. The Electron vehicle for NASA's ELaNa XIX payloads will undergo final stage testing in the coming weeks before delivery to Launch Complex 1 during 'It's Business Time' launch operations.

- Rocket Lab also recently completed two new clean room facilities at Launch Complex 1 to enable payloads for different missions to undergo payload integration simultaneously in separate, secure locations. Each 100 k class clean room is equipped with lifting and break-over tools, as well as secure and dedicated customer lounges offering views of payload integration.

- The ability to conduct overlapping engine hot fires, full static stage tests, payload integration and launch operations for multiple missions is a key factor in Rocket Lab's ability to meet a high-frequency launch cadence. Following the opening of Rocket Lab's latest production facility this month, the company is scaling operations to build, test and launch an Electron every week by the end of 2020.

- Rocket Lab Founder and Chief Executive Peter Beck says that while successfully reaching orbit and deploying payloads this year was a significant milestone for the company, transitioning from this to regular, streamlined production and launch operations cements Rocket Lab's position as leader in the small launch industry.

- It's Business Time mission details: It's Business Time will loft six satellites, plus a technology demonstrator, to Low Earth Orbit. The payloads will be launched to a 210 km x 500 km parking orbit at 85 degrees, before being circularized to a 500 km x 500 km orbit using Rocket Lab's Curie engine powered kick stage.

- The It's Business Time manifest includes satellites from Spire Global, Tyvak Nano-Satellite Systems, Fleet Space Technologies, and the Irvine CubeSat STEM Program (ICSP). The mission will also launch a drag sail technology demonstrator designed and built by High Performance Space Structure Systems GmbH (HPS GmbH).

 

Launch: On 11 November 2018 (03:50 GMT), Rocket Lab sent its third Electron rocket into orbit on the company's first fully-commercial mission. Called "It's Business Time," the flight successfully took to the skies from Launch Complex 1 on the Mahia Peninsula in New Zealand. 21) 22)

About 2.5 minutes into the flight, the first stage separated successfully and the second stage ignited properly to bring the satellites into low-Earth orbit (LEO).

About 3 minutes into the flight, the carbon-composite payload fairing separated correctly. The vehicle reached orbit about 9 minutes after liftoff. The payloads were brought to a 300 x 500 km parking orbit at 85 degrees. Some 40 minutes later, the orbit was circularized to a 500 km orbit using Rocket Lab's apogee kick stage, powered by the company's 3D-printed liquid-propellant-powered Curie engine.

The kick stage is capable of 120 N of thrust and can perform multiple burns to take payloads into different circularized orbits. According to Rocket Lab, it "opens up significantly more orbital options, particularly for ride-share customers that have traditionally been limited to the primary payload's designated orbit."

Orbit: Circular orbit of 500 km altitude with an inclination of 87º.

 

Payloads: "It's Business Time" put a total of seven small satellites into orbit. 23)

• Cicero-4, a 3U CubeSat of GeoOptics Inc. of Pasadena, CA, built by Tyvak Nanosatellite Systems. The objective is to perform GPS-RO (GPS Radio Occultation) experiments.

• Two Lemur-2 3U CubeSats of Spire Global of San Francisco, CA. The Lemur-2 satellites, called Lemur-2 Zupanski and Lemur-2 Channusiak, carry two payloads: STRATOS GPS radio occultation payload and the SENSE AIS payload. These new Lemurs also add an antenna and sensor for tracking aircraft. It's especially important for areas of the world where the current tracking ability is limited. Due to technology advances, Spire Global has seen a 5 x to10 x performance increase with each new spacecraft iteration. This has been achieved by using a combination of on-orbit software upgrades and new hardware for new satellites.

• Irvine-01, a 1U CubeSat of the educational ICSP (Irvine CubeSat STEM Program) that includes members from six public high schools in Irvine, California. The objective is to perform a number of scientific experiments and explore new space technologies.

• Proxima-1 and Proxima-2, these are 1.5 U pathfinder CubeSats of Fleet Space Technologies of Adelaide South Australia. The Australia-based IOT (Internet of Things) startup will use the two Fleet-built Proxima satellites as the beginning of a constellation (named Centauri) designed to provide Internet connectivity for millions of devices across the globe.

• NABEO, a 1U CubeSat. NABEO is a drag sail technology demonstrator built by HPS GmbH (High Performance Space Structure Systems GmBH) of Munich, Germany, with support of the state of Bavaria, which will test the ability to passively deorbit inactive, small satellites using atmospheric drag. NABEO features the HPS designed ADEO-nano (Atmospheric De-Orbit - nano) deployable drag sail, consisting of an ultra thin membrane, that will be tightly coiled within the spacecraft for launch and deployed once the satellite reaches the end of its operational lifespan. The NABEO payload remains attached to the kick stage of the Electron launch vehicle. The drag sail unfolds after the other satellites have been deployed to a 2.5 m2 size, which increases the upper stages atmospheric drag to reduce the orbital life time. NABEO has a mass of 1.3 kg while the ADEO-nano drag sail payload has a mass of just 100 g.

 


 

Rocket Lab flight: This One's for Pickering, NASA ELaNa-19, a VCLS (Venture Class Launch Services) mission

• December 16, 2018: The US small satellite launch company Rocket Lab has launched its third orbital mission of 2018, successfully deploying satellites to orbit for NASA. The mission, designated Educational Launch of Nanosatellites (ELaNa)-19 , took place just over a month after Rocket Lab's last successful orbital launch, ‘It's Business Time.' Rocket Lab has launched a total of 24 satellites to orbit in 2018. 24) 25)

Electron_Auto6

Figure 16: Rocket Lab's Electron launch vehicle successfully lifted off at 06:33 UTC (19:33 NZDT) from Rocket Lab Launch Complex 1 on New Zealand's Māhia Peninsula with the ELaNa-19 payloads (image credit: Rocket Lab)

After being launched to an elliptical orbit, Electron's Curie engine-powered kick stage separated from the vehicle's second stage before circularizing to a 500 x 500 km orbit at an 85 degree inclination. After 56 minutes into the mission, the 13 satellites on board were individually deployed to their precise, designated orbits.

The nanosatellites launched come from NASA's Goddard Space Flight Center, Glenn Research Center and Langley Research Center, along with the U.S. Naval Academy and educational institutions in California, Florida, Idaho, Illinois, New Mexico and West Virginia. There are also CubeSats from the Aerospace Corp. based in Southern California, and the Defense Advanced Research Projects Agency — the research and development arm of the U.S. Defense Department.

Payload complement of 13 CubeSats

This mission includes 10 ELaNa-19 (Educational Launch of Nanosatellites-19) payloads, selected by NASA's CubeSat Launch Initiative. The initiative is designed to enhance technology development and student involvement. These payloads will provide information and demonstrations in the following areas: 26)

• CeREs (Compact Radiation belt Explorer), a 3U CubeSat of NASA. High energy particle measurement in Earth's radiation belt.

• STF-1 (Simulation-to-Flight-1), a 3U CubeSat (4 kg) of WVU (West Virginia University). The objective is to demonstrate how established simulation technologies may be adapted for flexible and effective use on missions using the CubeSat Platform.

• AlBus (Advanced Electrical Bus), a 3U CubeSat of NASA/GRC to demonstrate power technology for high density CubeSats.

• CHOMPTT (CubeSat Handling Of Multisystem Precision Time Transfer), a 3U CubeSat of UFL (University of Florida). CHOMPTT is equipped with atomic clocks to be synchronized with a ground clock via laser pulses.

• CubeSail, a mission of the University of Illinois at Urbana-Champaign. A low-cost demonstration of the UltraSail solar sailing concept, using two near-identical 1.5U CubeSat satellites to deploy a 260 m-long, 20 m2 reflecting film.

• NMTSat (New Mexico Tech Satellite), a 3U CubeSat developed by the New Mexico Institute of Mining and Technology with the goal to monitor space weather in low Earth orbit and correlate this data with results from structural and electrical health monitoring systems.

• RSat-P (Repair Satellite-Prototype), a 3U CubeSat of the USNA (US Naval Academy ) in Annapolis Maryland to demonstrate capabilities for in-orbit repair systems (manipulation of robotic arms).

• ISX (Ionospheric Scintillation Explorer), a 3U CubeSat of NASA and CalPoly to investigate the physics of naturally occurring Equatorial Spread F ionospheric irregularities by deploying a passive ultra-high frequency radio scintillation receiver.

• Shields-1, a 3U CubeSat of NASA/LaRC, a technology demonstration of environmentally durable space hardware to increase the technology readiness level of new commercial hardware through performance validation in the relevant space environment.

• Da Vinci, a 3U CubeSat of the North Idaho STEM Charter Academy to teach students about radio waves, aeronautical engineering, space propulsion, and geography by sending a communication signal to schools around the world.

In addition to the 10 CubeSats to be launched through NASA's ELaNa program, there are three more nanosatellites set for liftoff on top of the Electron rocket in New Zealand. NASA also provided a launch opportunity for:

• AeroCube 11 consists of two nearly identical 3U CubeSats developed by the Aerospace Corp. in El Segundo, California. The AeroCube 11 mission's two CubeSats, named TOMSat EagleScout and TOMSat R3, will test miniaturized imagers. One of the CubeSats carries a pushbroom imager to collect vegetation data for comparison to the much larger OLI (Operational Land Imager) aboard the Landsat-8 satellite, and the other TOMSat CubeSat has a focal plane array on-board to take pictures of Earth, the moon and stars. Both satellites feature a laser communication downlink.

• SHFT (Space-based High Frequency Testbed), a 3U CubeSat (5 kg) mission of DARPA, developed by NASA/JPL. The objective is to study variations in the plasma density of the ionosphere by collecting high-frequency radio signals, including those from natural galactic background emissions, from Jupiter, and from transmitters on Earth.

Rocket Lab has christened the mission "This One's for Pickering" in honor of the New Zealand-born scientist William Pickering, who was director of the Jet Propulsion Laboratory in Pasadena, California, for 22 years until his retirement in 1976.

 


 

Rocket Lab flight: DARPA R3D2 (Radio Frequency Risk Reduction Deployment Demonstration)

The small satellite launch company Rocket Lab's first mission of 2019 will be a dedicated launch of a 150 kg minisatellite for DARPA (Defense Advanced Research Projects Agency), highlighting the U.S. Government's demand for a responsive, ultra-flexible and rapidly acquired launch service such as Rocket Lab's Electron. 27) 28)

The demonstration mission could help validate emerging concepts for a resilient sensor and data transport layer in low Earth orbit – a capability that does not exist today, but one which could revolutionize global communications by laying the groundwork for a spaceborne internet. R3D2 will monitor antenna deployment dynamics, survivability and radio frequency (RF) characteristics of a membrane antenna in low-Earth orbit. The antenna could enable multiple missions that currently require large satellites, to include high data rate communications to disadvantaged users on the ground.

Electron_Auto5

Figure 17: Left: The R3D2 minisatellite built by Northrop Grumman. Right: The antenna for the R3D2 spacecraft during deployment tests on the ground developed by MMA Design of Louisville CO (image credit: DARPA)

The 150 kg satellite will be the only payload on the launch as it takes up all the mass and volume available on the rocket. Northrop Grumman is the prime contractor for R3D2, with the antenna provided by MMA Design, and the satellite bus by Blue Canyon Technologies. Trident Systems designed and built R3D2's software-defined radio. 29)

"The Department of Defense has prioritized rapid acquisition of small satellite and launch capabilities. By relying on commercial acquisition practices, DARPA streamlined the R3D2 mission from conception through launch services acquisition," Fred Kennedy, director of DARPA's Tactical Technology Office, said in a statement. The mission timeline, from satellite design and development through launch, will take about 18 months.

The R3D2 antenna is made of a tissue-thin Kapton membrane, designed to pack tightly inside the small satellite for stowage during launch, before deploying to its full size of 2.25 meters in diameter in low Earth orbit. The design is intended to provide significant capability, typical of large spacecraft, in a much smaller package. The mission could lay the groundwork for a space-based internet by helping to validate emerging concepts for a resilient sensor and data transport layer in low Earth orbit – a capability that does not exist today.

 

Launch: On 28 March 2019, a Rocket Lab Electron launch vehicle successfully lifted off from Launch Complex 1 on New Zealand's Mahia Peninsula at 23:27, March 28th UTC (12:27, 29 March NZDT). 30) 31)

Orbit: The R3D2 spacecraft was deployed to a 425 x 425 km altitude at an inclination of 39.5 º by Electron's Kick Stage, a nimble upper stage designed to insert payloads with precise accuracy. 32)

The mission launched a prototype reflect array antenna to orbit for DARPA (Defense Advanced Research Projects Agency). Rocket Lab was selected for the launch because of the company's proven mission heritage and its ability support rapid acquisition of small satellite launch capabilities. Due to Rocket Lab's streamlined acquisition practices, DARPA's R3D2 mission was launched just over 18 months from conception – a significant reduction in traditional government launch acquisition timeframes.

 

Mission status

• May 7, 2019: Northrop Grumman's R3D2 experimental DARPA satellite has unfurled its cutting-edge antenna and successfully gone through initialization – but it's the rapid prototyping that the company's team leader Scott Stapp is excited about. 33)

- "Most of the defense industry is not known for being super fast" or for taking risks, he told me in an interview today. "We got it to orbit super fast, and we took very high risks."

- DARPA's goal for the R3D2 (Radio Frequency Risk Reduction Deployment Demonstration) was to demonstrate a new type of light-weight, small-volume antenna to help validate concepts for a resilient sensor and data transport layer in Low Earth Orbit (LEO) – a capability being pursed by the Missile Defense Agency, the Air Force and the SDA (Space Development Agency) for a variety of missions including missile defense and space-based Internet communications. It was also to demonstrate rapid development to launch capability by relying on commercial acquisition practices, with the program taking slightly more than 18 months from contract to launch (the latter was delayed about a month due to the government shutdown earlier this year).

- "The R3D2 mission has been successful thus far, both in demonstration of rapid acquisition for small satellite and launch capabilities, as well as successful deployment of the high compaction ratio antenna," a DARPA spokesperson told me today.

- But Stapp says that his ultimate goal for the project was to prove both to the company's management, as well as to its government customers, that the slow, risk averse culture of defense companies can be changed. He sees his team as a "small start-up within a major prime" that can rapidly "pull commercial technology in" and marry it to the advantages of being a big company with experience in running national security space programs. He says that, besides having "the best systems engineers," the big primes have process advantages that commercial firms don't in dealing with classification and the contracting complexities of working with DoD and the Intelligence Community.

 


 

Rocket Lab flight: STP-27RD

The STP (Space Test Program) is part of the United States Department of Defense (DoD), and ensures that potential launch and satellite platform providers will be able to meet the needs of government customers. s. Many of the technologies crucial to the functioning of today's society began as risk reduction experiments with STP, including the Global Positioning System (GPS) and the climate monitoring Joint Polar Satellite System (JPSS). STP has enabled pathfinder missions that accelerate development of breakthrough technologies such as ionosphere monitoring, laser communications, solar storm warning systems, space debris tracking, solar sails and next-generation atomic clocks. 34)

The STP-27RD mission is Rocket Lab's fifth orbital mission and the company's second launch in 2019. The payload consists of three satellites (Technology Demonstration Missions), SPARC-1, Falcon ODE and Harbinger, that will be deployed in a precise sequence.

SPARC-1 (Space Plug and Play Architecture Research CubeSat-1) mission, sponsored by the Air Force Research Laboratory Space Vehicles Directorate (AFRL/RV), is a joint Swedish-United States experiment to explore technology developments in avionics miniaturization, software defined radio systems, and SSA (Space Situational Awareness). SPARC-1 is a 6U CubeSat.

Falcon ODE (Falcon Orbital Debris Experiment): Falcon ODE is sponsored by the USAFA (United States Air Force Academy), will evaluate ground-based tracking of space objects. Falcon ODE is a 1U CubeSat; it will release two stainless steel ball bearings that will serve as calibrated radar and optical targets for ground-based space situational awareness sensors.

Harbinger is a commercial small satellite, built by York Space Systems and sponsored by the U.S Army, the objective is to demonstrate the ability of an experimental commercial system to meet DoD space capability requirements.

Electron_Auto4

Figure 18: Photo of the Harbinger minisatellite (image credit: York Space Systems)

At around 150 kg, Harbinger is the heaviest payload ever launched on Electron – and made up most of the 180 kg total mission mass. It carried an X-band SAR (Synthetic Aperture Radar) instrumentation, which can provide Earth observation data at any time – regardless of cloud cover.

Electron_Auto3

Figure 19: Payload integration into Electron's fairing, which took place on 30 April 2019 (image credit: Rocket Lab)

 

Launch: On 5 May 2019 (6:00 UTC), a Rocket Lab Electron rocket successfully launched three technology demonstration satellites for the US DoD (Defense Department) as part of an effort by the military to demonstrate responsive launch, STP-27RD. 35) 36)

Orbit: The three satellites were deployed into a near-circular orbit of 500 km altitude and an inclination of 40º.

Electron_Auto2

Figure 20: Artist's illustration of the SPARC-1 6U CubeSat in orbit (image credit: University of New Mexico/COSMIAC) 37)

 


 

Rocket Lab flight: Make it Rain

The 'Make It Rain' mission launched multiple spacecraft as part of a rideshare flight procured by Spaceflight of Seattle, WA. The launch took place from Rocket Lab Launch Complex 1 on New Zealand's Māhia Peninsula. 38)

The mission was named ‘Make it Rain' in a nod to the high volume of rainfall in Seattle, where Spaceflight is headquartered, as well as in New Zealand , where Launch Complex 1 is located. Among the payloads on the mission for Spaceflight were BlackSky's Global-3 satellite and Melbourne Space Program's ACRUX-1 CubeSat. 39)

Electron_Auto1

Figure 21: Left: Electron arrives at LC-1 in preparation for the Make it Rain mission. Right: Make it Rain Fairing (image credit: Rocket Lab, June 2019)

 

Launch: The Make it Rain mission was launched on 29 June 2019 (04:30 UTC (16:30 NZST) on an Electron vehicle of Rocket Lab from Space Complex-1 on New Zealand's Māhia Peninsula. 40)

Launch of seven payloads of The Make it Rain mission with a total mass of 80 kg:

• Global-3 microsatellite of BlackSky Global, Seattle, WA.

• Two Prometheus CubeSats of the US military SOCOM (Special Operations Command), developed by the Los Alamos National Laboratory.

• ACRUX-1 CubeSat, developed by the Melbourne Space Program, a non-profit educational organization affiliated with the University of Melbourne in Australia.

• Two SpaceBEE data relay CubeSats from Swarm Technologies Inc., USA.

• The identity and owner of the seventh payload has not been disclosed by Rocket Lab.

With the exception of Global-3, all of the payloads were processed and integrated at Spaceflight's facility in Auburn, Washington.

Electron_Auto0

Figure 22: Photo of the Global-3 microsatellite of BlackSky (56 kg), the largest of the seven spacecraft, integrated to the kick stage (image credit: Rocket Lab)

Orbit: The seven satellites were deployed into a near circular orbit of 450 km with an inclination of 45º.

At approximately 56 minutes after lift-off, the Make It Rain payloads were successfully delivered to their precise individual orbits by Electron's Kick Stage.

After payload deployment, the kick stage performed a deorbit burn, leaving no space debris in orbit. Rocket Lab has made limiting space junk a priority as part of their goal of growing the number of satellites in orbit with an accelerating launch cadence.

 


1) "Rocket Lab", Wikipedia, URL: https://en.wikipedia.org/wiki/Rocket_Lab

2) https://www.rocketlabusa.com/about-us/

3) Bradley J. Schneider, "Rocket Lab Introduction," July 2016, URL: https://web.archive.org/web/20160920143833if_/http://usgif.org/system/
uploads/4606/original/ROCKET_LAB_INTRO_USGIF.pdf

4) "Rocket Lab Celebrates Rich Ten-Year History," Rocket Lab, 30 June 2016, URL: https://www.rocketlabusa.com/news/updates/rocket-lab-celebrates-rich-ten-year-history/

5) "Space Launch Report: Rocket Lab Electron Data Sheet," Rocket Lab Electron, 2015, URL: http://www.spacelaunchreport.com/electron.html

6) "Payload User's Guide," Rocket Lab, 16 Dec. 2016, Version 4.0, URL: https://www.rocketlabusa.com/assets/Uploads/Payload-User-Guide.pdf

7) Bradley Schneider, "Rocket Lab: Liberating the Small Satellite Market," Proceedings of the 69th IAC (International Astronautical Congress) Bremen, Germany, 1-5 October 2018, paper: IAC-18.B4.5.1, URL: https://iafastro.directory/iac/proceedings/IAC-18/IAC-18/B4/5/manuscripts/IAC-18,B4,5,1,x48601.pdf

8) "Electron — Bold Hardware That Will Change How We Access Space," Rocket Lab, URL: http://rocketlabusa.com/electron/

9) Peter Beck, "Making Space on Orbit: Responsible Orbital Deployment in the Era of High-Volume Launch," Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, August 3-8, 2019, Logan, UT, USA, paper: SSC19-X-01, URL: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4441&context=smallsat

10) "The Kick Stage: Responsible Orbital Deployment," Rocket Lab, URL: https://www.rocketlabusa.com/news/updates/the
-kick-stage-responsible-orbital-deployment/

11) Werner, Debra. "An embarrassment of rockets?" Space News, 22 May 2019, URL: https://spacenews.com/an-embarrassment-of-rockets/

12) "Rocket Lab details plans to increase launch frequency by recovering and re-launching Electron's first stage," Rocket Lab, 6 August 2019, URL: https://www.rocketlabusa.com/news/updates/rocket
-lab-announces-reusability-plans-for-electron-rocket/

13) "Rocket Lab selects Wallops Flight Facility for US launch site,"Rocket Lab News, 17 October 2018, URL: https://www.rocketlabusa.com/news/updates/rocket-lab
-selects-wallops-flight-facility-for-us-launch-site/

14) "Rocket Lab Completes Post-Flight Analysis for Electron 'Its a Test' ," Rocket Lab, 7 August 2017, URL: https://www.rocketlabusa.com/news/updates/rocket
-lab-completes-post-flight-analysis/

15) Jeff Foust, "Rocket Lab Electron reaches orbit on second launch," Space News, 20 Jan. 2018, URL: http://spacenews.com/rocket-lab-electron-reaches-orbit-on-second-launch/

16) Eric Berger, "Rocket Lab makes it into orbit, nears commercial operations," ars Technica, 22 Jan. 2018, URL: https://arstechnica.com/science/2018/01/rocket-lab-makes-it
-into-orbit-nears-commercial-operations/

17) "Rocket Lab successfully circularizes orbit with new Electron kick stage," Rocket Lab, 23 Jan. 2018, URL: http://rocketlabusa.com/news/updates/rocket-lab-successfully
-circularizes-orbit-with-new-electron-kick-stage/

18) Matt Williams, "Perhaps the Best Part of Electron's Successful Launch was its Payload: the Humanity Sphere," Universe Today, 25 Jan. 2018, URL: https://www.universetoday.com/138365/perhaps-best-part-electrons-successful-launch-payload-humanity-sphere/

19) "Humanity Star," URL: https://www.thehumanitystar.com/

20) "Rocket Lab enters high frequency launch operations," Space Daily, 01 November 2018, URL: http://www.spacedaily.com/reports/Rocket_Lab_enters
_high_frequency_launch_operations_999.html

21) Rae Botsford End,"Finally ‘business time' for Rocket Lab with 7 payloads launched," Spaceflight Insider, 11 November 2018, URL: http://www.spaceflightinsider.com/organizations/rocket-lab/
finally-business-time-for-rocket-lab-with-7-payloads-launched/

22) "Fleet Space Technologies' First Smallsats Successfully Launched by Rocket Lab," Satnews Daily, 12 >November 2018, URL: http://www.satnews.com/story.php?number=2122159547

23) 'IT's business time', Rocket Lab USA press Kit, November 2018, URL: https://www.rocketlabusa.com/assets/Uploads/Its-Business-Time-Press-Kit6.pdf

24) "Rocket Lab successfully launches NASA CubeSats to orbit on first ever Venture Class Launch Services mission," Rocket Lab, 16 December 2018, URL: https://www.rocketlabusa.com/news/updates/rocket
-lab-successfully-launches-nasa-cubesats-to-orbit-on
-first-ever-venture-class-launch-services-mission/

25) Stephen Clark, "NASA, Rocket Lab partner on successful satellite launch from New Zealand," Spaceflight Now, 17 December 2018, URL: https://spaceflightnow.com/2018/12/17/nasa-rocket-lab-partner
-on-successful-satellite-launch-from-new-zealand/

26) "10 CubeSats Ready for NASA's First Venture Class Launch," NASA, 13 December 2018, URL: https://www.nasa.gov/feature/10-cubesats-ready-for-nasa-s-first-venture-class-launch

The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: "Observation of the Earth and Its Environment: Survey of Missions and Sensors" (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (herb.kramer@gmx.net).

27) "Rocket Lab's Electron to Launch a Prototype Reflect Array Antenna for DARPA," Satnews Daily, 22 January 2019, URL: http://www.satnews.com/story.php?number=2082105394

28) "DARPA Prototype Reflectarray Antenna Offers High Performance in Small Package," DARPA, 22 January 2019, URL: https://www.darpa.mil/news-events/2019-01-22b

29) Jeff Foust, "Rocket Lab to launch DARPA satellite," Space News, 22 January 2019, URL: https://spacenews.com/rocket-lab-to-launch-darpa-satellite/

30) "Rocket Lab successfully launches R3D2 satellite for DARPA," Rocket Lab, 28 March 2019, URL: https://www.rocketlabusa.com/news/updates/rocket-
lab-successfully-launches-r3d2-satellite-for-darpa/

31) "A Kiwi Launches DARPA's $25 Million R3D2 ... Rocket Lab Sends Small Satellite Soaring From New Zealand," Satnews Daily, 29 March 2019, URL: http://www.satnews.com/story.php?number=1146767958

32) "DARPA R3D2 Press Kit March 2019," URL: https://www.rocketlabusa.com/assets/Uploads
/Rocket-Lab-press-kit-DARPA-R3D2.pdf

33) Theresa Hitchens, "DARPA's R3D2: Big Company Makes Small Sat Fast," Breaking Defense, 7 May 2019, URL: https://breakingdefense.com/2019/05/darpas-r3d2-big-company-makes-small-sat-fast/

34) "STP-27RD press KitMay 2019," Rocket Lab, 4 May 2019, URL: https://www.rocketlabusa.com/assets/Uploads/
Rocket-Lab-STP-27RD-press-kit2.pdf

35) Jeff Foust, "Rocket Lab launches three U.S. military satellites," SpaceNews, 5 May 2019, URL: https://spacenews.com/rocket-lab-launches-three-u-s-military-satellites/

36) "Rocket Lab successfully launches three R&D satellites to orbit for the U.S. Air Force," Rocket Lab, 10 May, 2019, URL: https://www.rocketlabusa.com/news/updates/
rocket-lab-successfully-launches-three-r
-and-d-satellites-to-orbit-for-the-u-s-air-force/

37) Stephen Clark, "Rocket Lab deploys experimental U.S. military smallsats on first night launch," Spaceflight Now, 5 May 2019, URL: https://spaceflightnow.com/2019/05/05/rocket-labs-deploys-
experimental-u-s-military-smallsats-on-first-night-launch/

38) "Make it Rain," Rocket Lab, 29 June 2019, URL: https://www.rocketlabusa.com/missions/completed-missions/make-it-rain/

39) "MAKE IT RAIN press Kit June 2019, Rocket Lab, URL: https://www.rocketlabusa.com/assets/Uploads/
Rocket-Lab-MAKE-IT-RAIN-press-kit.pdf

40) "Rocket Lab successfully launches seventh Electron mission, deploys seven satellites to orbit," Rocket Lab, 29 June, 2019, URL: https://www.rocketlabusa.com/news/updates/rocket
-lab-successfully-launches-seventh-electron-
mission-deploys-seven-satellites-to-orbit/

 


The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: "Observation of the Earth and Its Environment: Survey of Missions and Sensors" (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (herb.kramer@gmx.net).

Electron   Launch   Mission Status   References   Back to top