Minimize Landsat-9


Spacecraft   Launch    Sensor Complement   Ground Segment   References

Landsat-9 — a partnership between NASA and USGS (U.S. Geological Survey) — will continue the Landsat program’s critical role in monitoring, understanding and managing the land resources needed to sustain human life. Today’s increased rates of global land cover and land use change have profound consequences for weather and climate change, ecosystem function and services, carbon cycling and sequestration, resource management, the national and global economy, human health, and society. 1) 2) 3) 4)

Landsat is the only U.S. satellite system designed and operated to repeatedly observe the global land surface at a moderate scale that shows both natural and human-induced change.


Figure 1: Timeline of the Landsat program, starting with the launch of Landsat-1. Landsat-9, slated to launch in September 2021, will continue the legacy of the Landsat program (image credit: NASA)

• In 2016, the Landsat-9 project has been fast-tracked for a December 2020 launch (initially planned for 2023) .The risk reduction of a Landsat data gap is a high priority of the U.S. Sustainable Land Imaging Program. Landsat-9 will be a rebuild of Landsat-8 so it can be launched as soon as possible. 5)

- Hence, NASA HQ amended direction in response to FY16 appropriations and associated congressional language targeting a 2020 launch (Ref. 2).

- In January 2016, the project has been directed to pursue the earliest possible launch date within the spending authority provided in FY16.

- Project has $100M in Congressionally directed spending authority for FY16: $58M of unspent carryover from FY15, $42M in new FY16 funding.

- Substantial progress in FY16 is required for maintaining CY2020 LRD (Launch Readiness Date).

According to Jeff Masek, the project scientist: “With a launch in 2020, Landsat-9 will propel the program into the next half-century of global observations. That’s the hallmark of Landsat: the longer the satellites view the Earth, the more phenomena you can observe and understand.”

Landsat-9, like Landsat-8, will have a higher imaging capacity than past Landsat missions, allowing more valuable data to be added to the Landsat’s global land archive.

Landsat-8, after collecting data for 3.5 years, has already added over 827,000 images to the archive—this represents 12.5 percent of the entire 44-year Landsat data collection—and each day Landsat-8 adds another ~700 new scenes. Landsat-9, like Landsat-8, will be both radiometrically and geometrically better than earlier generation Landsats.

Landsat-9 is essential for informed land use decisions:

Landsat-9 will extend our ability to measure changes on the global land surface at a scale where we can separate human and natural causes of change. When land use and resource availability issues arise, Landsat-9 will help decision makers make informed management decisions. Landsat-9 will thus contribute a critical component to the international strategy for monitoring the health and state of the Earth.

Landsat users can now take advantage of more frequent observations (every 8 days using two satellites). Applications such as weekly tropical deforestation alerts, water quality monitoring, and crop condition reports are now feasible with the constellation.

With increased activity in international and commercial remote sensing, Landsat has emerged as a cornerstone of the global constellation of imagers. The science quality of the Landsat archive, including careful calibration, allows it to serve as a “gold standard” for studies harmonizing multiple sources of satellite imagery.

Landsat-9 will enable informed decision support for key areas such as:

• Tropical deforestation and global forest dynamics: the Landsat archive provides an impartial and unbiased record of Earth’s forests for world governments and resource organizations to verify claims of environmental protection and carbon storage.

• Urban expansion: the Landsat record helps us visualize the impact of humankind’s convergence on urban centers and to understand the environmental consequences.

• Water use: Landsat-9 will be an invaluable tool for managing water in areas such as the Western U.S. where water is scarce and water usage between agriculture, industry, and residential needs is very competitive.

• Coral reef degradation: Landsat has helped enable global monitoring of Earth’s reefs.

• Glacier and ice-shelf retreat: the Landsat archive chronicles changes to 98 percent of Earth’s glaciers, and Landsat-9 will continue monitoring them into the future.

• Natural and man-made disasters: Landsat data are regularly used as part of the International Disaster Charter, mapping disaster impacts to save lives.

• Climate change: Landsat data provide a direct view of how almost five decades of climate change have affected Earth’s surface and biology.

Some background: Already in April 2015, NASA and the U.S. Geological Survey (USGS) have started work on Landsat- 9, planned to launch in 2023, to extend the Earth-observing program’s record of land images to half a century. 6)

Landsat is a remarkably successful partnership," said Sarah Ryker, USGS deputy associate director for climate and land use change, Reston, Virginia. "Last year the White House found that GPS, weather satellites, and Landsat are the three most critical types of Earth-orbiting assets for civil applications, because they're used by many economic sectors and fields of research. Having Landsat-9 in progress, and a long-term commitment to sustainable land imaging, is great for natural resource science and for data-driven industries such as precision agriculture and insurance."

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will lead development of the Landsat-9 flight segment. Goddard will also build the TIRS-2 (Thermal Infrared Sensor-2), which will be similar to the TIRS that the center built for Landsat-8. The new improved TIRS will have a five-year design lifetime, compared to the three-year design lifetime of the sensor on Landsat-8.

With decades of observations, scientists can tease out subtle changes in ecosystems, the effects of climate change on permafrost, changes in farming technologies, and many other activities that alter the landscape.

SLI (Sustainable Land Imaging) 2016-2035:

President Obama's NASA budgets of FY14 and FY15 called for design and initiation of an affordable, sustained,Land Imaging Satellite System (with USGS) to extend the Landsat data record for decades –not just the “next mission”. 7)

The SLI program will enable the development of a multi-decade, spaceborne system that will provide users worldwide with high-quality, global, land-imaging measurements that are compatible with the existing 44-year Landsat data record. Landsat-9 is the latest satellite in the Landsat series — it will continue Landsat’s irreplaceable record of Earth’s land surface upon its 2020 launch. To reduce the build time and a risk of a gap in observations, Landsat-9 will largely replicate its predecessor Landsat-8.


• Launched in 1999

• Scan Line Corrector instrument hardware failure in 2003 resulted in a loss of 22% of each Landsat-7 scene

• Collecting ~475 scenes per day; ~22% of pixels missing per scene (faulty scan-line corrector)

• LS-7 collection strategy modified to concentrate on continental coverage(L8 capturing islands and reefs)

• Expected to be decommissioned in 2020 (potential extension by an additional 24 months beyond 2020 if science is still valuable from data acquired earlier than 09:30 MLT).


• Launched in February 2013

• OLI (Operational Land Imager); the 30 m resolution, multispectral instrument) is operating superbly

• TIRS (Thermal Infrared Sensor) is experiencing a stray light problem in one of two channels; also now operating on redundant hardware

• Currently collecting 725 scenes/day (exceeding the requirement of 400 scenes/day)

• Fuel could last ~20 years based on operational consumption to date.

Table 1: Landsat program on-orbit status as of July 2015

Legend to Figure NO TAG#:

- a) Limited data of Landsat-4 due to transmitter failure soon after launch. Only 45,172 Landsat-4 TM (Thematic Mapper) scenes from 1982-1993 are available for science users ~10 scenes/day (versus 725 scenes/day from Landsat-8)

- b) Data coverage of Landsat-5 is limited to CONUS (Continental US) and international ground station sites after a transmitter failure in 1987; the MSC (Multispectral Scanner) turned off in August 1995.

- c) Degraded performance due to SLC (Scan Line Corrector) failure in May 2003.

Landsat-9 mission objectives:

• Collect and archive moderate-resolution, reflective and emissive multispectral image data affording seasonal coverage of the global land mass for a period of no less than five years.

• Ensure that Landsat-9 data are sufficiently consistent with data from the earlier Landsat missions, in terms of acquisition geometry, acquisition rates, calibration, coverage characteristics, spectral and spatial characteristics, output product quality, and data availability to permit studies of land cover and land use change over multi-decadal period.

• Distribute standard Landsat-9 data products to users on a nondiscriminatory basis and at no cost to the users.


The Landsat-9 satellite will be constructed at Northrop Grumman Innovation Systems (formerly Orbital ATK in Gilbert, AZ), NASA awarded a contract in October 2016. 8) Landsat-9 is based on the company’s LEOStarTM-3 platform, the medium-class LEO (Low Earth Orbit) spacecraft successfully flown on Landsat-8 and NASA’s Fermi and Swift Gamma-ray astrophysics observatories. Landsat-9 will be designed, manufactured and tested by Orbital ATK’s Space Systems Group at its facilities in Gilbert, Arizona, the same location and production team that executed the Landsat-8 program. Orbital ATK will also support launch, early orbit operations and on-orbit check-out of the observatory, which is scheduled for launch in December of 2020. 9) 10)


Figure 2: Artist's rendering of the Landsat-9 spacecraft (image credit: NASA)

Project development status

• September 21, 2021: The Landsat-9 observatory has been mounted on top of a United Launch Alliance Atlas 5 rocket in California for liftoff Sept. 27, continuing an unbroken record of Earth observations to track urban sprawl, water usage, tropical deforestation, retreating glaciers, and more over the last half-century. 11)


Figure 3: The Landsat 9 Earth observation satellite inside the payload fairing of an Atlas 5 rocket at Vandenberg Space Force Base (image credit: NASA)

• August 31, 2021: A one-week delay in the launch of the next Landsat satellite on an Atlas 5 is the result of a ripple effect in the supply chain caused by increased demand for liquid oxygen to treat COVID-19 patients. 12)

- NASA announced Aug. 27 that the launch of Landsat 9 on an Atlas 5 from Vandenberg Space Force Base in California had slipped a week, from Sept. 16 to no earlier than Sept. 23, because “pandemic demands for medical liquid oxygen have impacted the delivery of the needed liquid nitrogen supply.” Liquid nitrogen, or LN2, is used to create gaseous nitrogen needed to support launch site activities.

- During an Aug. 31 virtual news briefing about the upcoming launch, Del Jenstrom, NASA Landsat-9 project manager, said the issue was not an overall lack of liquid nitrogen but instead a transportation issue.

- “There’s plenty of liquid nitrogen in the Los Angeles area. The problem is they need some trucks to bring it up to Vandenberg,” he said. “Because of the pandemic, from what we understand, liquid oxygen deliveries have been paying much higher premiums than liquid nitrogen deliveries, and LN2 trucks have been converted to carry liquid oxygen.”

- Jenstrom said that the Defense Logistics Agency (DLA) informed the project Aug. 23 that liquid nitrogen supplies at the base were “critically low” and could not support upcoming prelaunch test activities or the launch itself. That prompted NASA Deputy Administrator Pam Melroy to contact senior DLA officials to discuss ways to restore the base’s nitrogen supply.

- Airgas, the company that handles the nitrogen supply at Vandenberg, is bringing in “a dozen or so” liquid nitrogen tankers from the Gulf Coast temporarily to increase deliveries. “We’re seeing a substantial increase of the number of LN2 deliveries to the base right now,” he said, “and as far as we know, based on latest reports, we’re on track to support our launch on Sept. 23.”

- Supply chain issues related directly or indirectly to liquid oxygen, which is used by hospitals as the oxygen source for ventilators, came to light recently when Gwynne Shotwell, president and chief operating officer of SpaceX, mentioned them during a panel discussion at the 36th Space Symposium in Colorado Springs Aug. 24.

- “We’re actually going to be impacted this year with the lack of liquid oxygen for launch,” she said. “We certainly are going to make sure the hospitals are going to have the oxygen that they need, but for anybody who has liquid oxygen to spare, send me an email.”

- At that time, Tory Bruno, chief executive of United Launch Alliance, hinted at a problem getting liquid nitrogen to Vandenberg to support the upcoming Landsat-9 launch. “Working that situation now,” Bruno said.

- The next launch planned for Vandenberg is not the Atlas 5 launch of Landsat-9. Instead, Firefly Aerospace has scheduled the inaugural launch of its Alpha rocket from the base on Sept. 2, during a four-hour window that opens at 9 p.m. Eastern. Company spokesperson Kim Jennett told SpaceNews Aug. 31 the launch remains on schedule and is not affected by any liquid nitrogen or other supply issues.

- Liquid oxygen supply chain problems extend beyond the United States. Dmitry Rogozin, head of Roscosmos, tweeted Aug. 29 that Roscosmos had for months been transferring “almost all” of the oxygen produced by its various enterprises to hospitals. That has postponed testing of rocket engines, he claimed.

• August 16, 2021: Landsat-9, a joint NASA and U.S. Geological Survey satellite mission, is scheduled to launch Thursday, Sept. 16, from Vandenberg Space Force Base in California. To help the media and public learn more about the project and its near 50-year history, NASA has launched a new interactive website: 13)

- The Landsat Program missions changed the field of Earth science when the Landsat 1 satellite launched in 1972. In 2008, the program created new opportunities for research around the world when it made decades of Landsat data available to the public for free.

- The Landsat-9 satellite continues the program's critical role in monitoring, understanding, and managing land resources – agricultural crops, water, and forests – needed to sustain human life.

- Landsat’s data of Earth’s surface as seen from space have transformed scientists’ understanding of regional, national, and global-scale changes in land use and land cover, providing information for sectors including agriculture, forestry, urbanization, hydrology, and homeland security and disaster mitigation. Landsat-9 will continue this record of monitoring key natural and economic resources, as well as global environmental changes into the future.

- Once fully commissioned in orbit after launch, Landsat-9 will replace Landsat-7 and join its sister satellite, Landsat-8. Together, they will collect images that capture Earth’s land surfaces every eight days.

- Landsat-9 uses similar instrument technology to Landsat-8. Carrying two sensors, the Operational Land Imager-2 (OLI-2), built by Ball Aerospace & Technologies Corporation, and the Thermal Infrared Sensor-2 (TIRS-2), built at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, it will detect the reflected light and heat emitted from Earth’s surface across the visible, near infrared, shortwave infrared, and thermal infrared wavelengths.

- The instruments will capture more than 700 new images daily across 11 wavelengths at 30-meter resolution. This resolution is fine enough to detect even small agricultural fields, buildings, forest stands, and lakes, while still providing a broad enough swath to cover large areas of terrain. With its 11 wavelengths, the instruments will capture information about Earth, including data related to coastal waters, forests, healthy and unhealthy plants, and wildfire scars in the visible light to thermal infrared ranges.

- United Launch Alliance is the spacecraft provider for Landsat-9’s launch. Northrop Grumman built the Landsat-9 spacecraft, integrated it with instruments, and tested the observatory.

- The U.S. Geological Survey Earth Resources Observation and Science Center will operate the mission and manage the ground system, including maintaining the Landsat archive.

- To date, more than 18,000 peer-reviewed research papers have used Landsat data, and many public and private programs use it to support agriculture, forest management, urban development, wildfire-damaged vegetation recovery, and many more applications.

• August 1, 2021: Landsat-9 is in its final preparations for launch from Vandenberg Space Force Base on 16 September 2021. It has completed its environmental testing at Northrop Grumman Space (NGSP) in Gilbert, Arizona and has been transported to its California launch site. It will be launched into a 705 km orbit replacing Landsat-7 to provide 8-day Earth land mass coverage in concert with Landsat-8. Landsat-8 carries the first Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS); Landsat-9 carries the second of each: OLI-2 and TIRS-2. Once launched it will undergo a 90-day activation, checkout, characterization and calibration, a.k.a. commissioning phase before transitioning to operations. For a several-day period during this commissioning phase, Landsat-9 will under-fly Landsat-8, allowing near simultaneous data collection by both sensors of common Earth targets. These data will be used to compare the radiometric calibrations of the instruments and allow for adjustments of processing parameters to provide more consistent data products. 14)

• August 14, 2020: Landsat is the only U.S. satellite system designed and operated to repeatedly observe the global land surface at a moderate scale that shows both natural and human-induced change. 15) 16)

- Since reducing the risk of a Landsat data gap is a high priority of the U.S. Sustainable Land Imaging Program, Landsat-9 has a design very similar to Landsat-8’s; allowing the Landsat-9 build and launch to be expedited.

- Landsat-9, slated for a Mid-2021 launch, will join Landsat-8 in orbit; the satellite orbits will be 8 days out of phase. Landsat 9 will replace Landsat-7 (launched in 1999), taking its place in orbit (8 days out of phase with Landsat-8). The combined Landsat-8 + Landsat-9 revisit time for data collection with be every 8 days, like it currently is for Landsat-8 + Landsat-7.

- Landsat-9, like Landsat-8, will have a higher imaging capacity than past Landsats, allowing more valuable data to be added to the Landsat’s global land archive.

- Landsat-8, after collecting data for 7 years, has added over 1.6 million images to the archive and each day Landsat-8 adds another ~700 new scenes.

- Landsat-9, like Landsat-8, will be both radiometrically and geometrically better than earlier generation Landsats.


Figure 4: The data contributions of each Landsat satellite to the USGS Landsat data archive as of Sept. 30, 2019. For Landsats 4 and 5, the darker color on the bars represents Multispectral Scanner System data and the lighter color is Thematic Mapper data collected by the mission (image credit: NASA)

• April 3, 2020: Landsat-9 has successfully passed its Mission Operations Review. Together, NASA and USGS demonstrated that the Landsat-9 ground system and mission operation preparations are highly mature. The maturity of the Landsat-9 ground system and mission operation development significantly exceeds the requirements of the Mission Operations Review, putting the Landsat-9 mission well on track to complete remaining preparations prior to launch. 17) 18)

- The Mission Operations Review panel lauded the Landsat-9 mission for the excellent joint agency teamwork between NASA and USGS, the exceptional quality of presentation materials, and the team’s creative and flexible responses in the face of major challenges, including the COVID-19 pandemic.

- Both Landsat-9 Project Managers, Del Jenstrom (NASA) and Brian Sauer (USGS), extended their praise and appreciation to the Landsat-9 ground system and mission operations readiness team for their work that led to a highly successful review performance.

- The joint NASA/USGS Landsat 9 mission continues the nearly 50-year Landsat data record, providing actionable information to resource managers and policymakers around the world. In 2021, Landsat-9 will join Landsat-8 in orbit and the two satellites will work together to record the condition of Earth’s ever-changing land surface, enabling scientists and others to monitor crops and algal blooms, to assess deforestation trends and urban growth, and to aid disaster management.

• January 9, 2020: Landsat 9’s two science instruments are now attached to the spacecraft, bringing the mission one step closer to launch. In late December, the Operational Land Imager 2 (OLI-2) and the Thermal Infrared Sensor 2 (TIRS-2) were both mechanically integrated on to the spacecraft bus at Northrop Grumman in Gilbert, Arizona. 19)


Figure 5: Engineers work on the newly integrated Landsat 9 satellite in a cleanroom at the Northrop Grumman facility in Gilbert, Arizona. In December, the team attached Landsat 9’s two instruments: OLI-2 (left) and TIRS-2 (right) to the spacecraft bus at the bottom of the image. The two instruments are covered to protect them from contaminants ( image credit: Northrop Grumman)

- Engineers will next work on the electrical integration of the instruments, which includes getting power to the instruments and incorporating the satellite’s data-handling hardware.

• September 27, 2019: The Landsat-9 instrument that will help scientists detect deforestation, monitor crops and track potentially toxic algal blooms, among many other uses, is now built, tested, and in place to be assembled onto the spacecraft. 20)

- OLI-2 (Operational Land Imager 2) will detect visible and infrared light from Earth’s surface, providing data on our changing planet. Like its predecessor that launched in 2013 on the Landsat-8 satellite, OLI-2 contains thousands of sensors that view a swath of Earth’s surface in nine spectral bands, optimized to detect different features on the surface.


Figure 6: OLI-2 is shown in this photo at Ball Aerospace in Boulder, Colorado, where it was built and tested. On Sept. 18 it was trucked from Boulder to the Northrop Grumman facility in Gilbert, Arizona, arriving the next day. At Northrop Grumman, engineers will assemble and then test the complete Landsat 9 spacecraft with OLI-2 and another instrument, TIRS-2 (Thermal Infrared Sensor-2), which was built at NASA’s Goddard Space Flight Center in Greenbelt, Maryland (image credit: Ball Aerospace, Alex Turner)

Figure 7: The Landsat-9 instrument that will help scientists detect deforestation, monitor crops and track potentially toxic algal blooms, among many other uses, is now built, tested, and in place to be assembled onto the spacecraft. The Operational Land Imager 2, or OLI-2, will detect visible and infrared light from Earth's surface, providing data on our changing planet (video credit: NASA Goddard, Scientific Visualization Studio)

• August 23, 2019: This month, TIRS-2 successfully passed the stringent 12-week testing process at NASA's Goddard Space Flight Center in Greenbelt, Maryland. It was shipped to Northrop Grumman’s facility in Arizona, where it and the OLI-2 (Operational Land Imager-2) will be assembled onto the Landsat-9 spacecraft. Landsat-9 is a joint effort of NASA and the U.S. Geological Survey. 21)


Figure 8: Engineers pose with the TIRS-2 instrument, which was built and tested at NASA Goddard (image credit: NASA)

Figure 9: From orbit aboard the Landsat-9 satellite, the TIRS-2 (Thermal Infrared Sensor-2) will measure the temperature of Earth’s land surfaces, detecting everything from a smoldering wildfire, to the amount of irrigation used on crop fields, to wispy clouds that are all but invisible to other instruments. First, however, it had to survive tests that simulated the harsh environment of space (video credit: NASA Goddard, Published on Aug 23, 2019)

- Like digital cameras on a smart phone, the TIRS-2 instrument is an imager, said Joel McCorkel, the instrument’s deputy project scientist. But while a camera detects light reflected off an object, TIRS-2 detects the thermal energy that an object emits. The hotter a surface is, the more energy the instrument will detect. And since TIRS-2 is a highly-calibrated scientific instrument, not a camera, it provides data that researchers can use to investigate key questions about our home planet.

- TIRS-2 is designed to work in the same way as the first TIRS instrument, which launched on Landsat-8 in 2013 and is still collecting important data on Earth’s surface temperature. But the latest version has a couple improvements.

- “The beauty of TIRS-2, is that we had TIRS data from up in orbit and were able to look at what worked, and how we could mitigate what didn’t work,” said Melody Djam, TIRS-2 instrument deputy project manager at Goddard.

- The TIRS-2 team incorporated a new optical component to shield the instrument’s sensor from stray light that had caused problems on the original instrument, requiring software fixes. The first TIRS was also designed, constructed, and integrated in less than three years – which is an incredibly quick turnaround for a satellite’s instrument – and so it was only required to last three years. TIRS-2, however, is designed with redundant electronics and other components in order to last at least five years.

- IRS-2 has about 10 main components, and each one was built and tested individually before engineers brought everything together to ensure the instrument worked, Djam said. The engineering team, which included as many as 250 people, then tested the whole instrument both in the clean room, as well as in environmental chambers that simulate the launch and space environments.

- With round-the-clock shifts and successful tests, the team delivered the instrument more than two weeks ahead of its target date. TIRS-2 passed its pre-ship review on Aug. 12 and was trucked to Gilbert, Arizona in two shipments. At the Northrop Grumman facility, the team will reassemble it, test it, and make sure everything is ready to integrate the instrument with the Landsat 9 spacecraft this fall.

Taking Earth’s temperatures from orbit

- Landsat satellites have been observing Earth since 1972, building the longest continuous record from space of the planet’s forests, farms, cities, and other surfaces. Starting with Landsat-4 and continuing through the first TIRS instrument on Landsat-8, the satellites have carried instruments that can detect thermal energy as well as visible and infrared light – and water managers and others have put these observations to work.

- “Landsat’s thermal data is critical for tracking water use in the western United States, where rainfall can be short in supply and managing water resources is critical to ensuring a sustainable supply for farmers, cities, and natural ecosystems,” said Bruce Cook, Landsat-9 deputy project scientist at Goddard.

- When plants take up water from the soil, they ‘sweat’ it out as they undergo transpiration, cooling them down just as sweating cools people down. By measuring the temperature of growing plants and soils that are cooled by transpiration and evaporation, respectively, Landsat users can create maps that quantify water use and consumption. The accuracy of these maps is increased by TIRS’ two thermal bands, which allows researchers to subtract out the effect of atmospheric constituents better than with the single-band thermal data from previous Landsat instruments.

- TIRS also works “behind the scenes” to detect clouds that are difficult to sense with visible data alone, which makes it an important filter for scientists constructing Landsat time series to record disturbances and changes in land cover over time.

- “With TIRS, scientists can better identify clouds, remove those data, and focus on the real land surface,” said McCorkel. “This increases the efficiency of their study and the accuracy of their science, whether they’re looking at a plot of land or a continent.”

• On June 6, 2018, Northrop Grumman Corporation announced it has closed the acquisition of Orbital ATK Inc. (“Orbital ATK”), a global leader in aerospace and defense technologies. Orbital ATK is now Northrop Grumman Innovation Systems, a new, fourth business sector. — Hence, the Landsat-9 spacecraft development news are now going to be reported under the label of Northrop Grumman. 22)

• May 23, 2018: Landsat-9 will continue the Landsat program’s critical role in monitoring, understanding and managing the land resources needed to sustain human life. To do so, Landsat-9 will carry two science instruments: the Operational Land Imager 2 (OLI-2) and the Thermal Infrared Sensor 2 (TIRS-2). 23)


Figure 10: Ball Aerospace technicians prepare to install the focal plane assembly, a 14-module detector array, into the OLI-2 (Operational Land Imager 2), one of the key science instruments for Landsat-9 (image credit: Ball Aerospace)

• April 25, 2018: The Landsat-9 Mission Critical Design Review was held April 17-20, 2018 at NASA/GSFC (Goddard Space Flight Center), Greenbelt, MD. NASA and USGS scientists and engineers provided the Standing Review Board (SRB) a status on all segments including the spacecraft, instruments, launch vehicle, and ground system to date. 24)

- The SRB had high praise for the accomplishments and the strengths of the Landsat-9 project team. Highlights noted included the high degree of experience and expertise throughout the project, the close working relationship among agency team members, the project’s strong technical maturity, the cost and schedule performance to date, the maturity of plans going forward, and exemplary use of lessons learned. The SRB assigned one request for action (RFA) related to USGS funding reserve levels.

• April 10, 2018: The USGS and NASA held a Landsat-9 Ground System Preliminary Design Review (GPDR) on March 20-22, 2018 in Sioux Falls, South Dakota. The GPDR, which contains the Data Processing and Archive System (DPAS), Ground Network Element (GNE) and Landsat Multi-Satellite Operations Center (LMOC) components, demonstrated that the proposed design of each component satisfies the required functional and performance requirements to continue the Landsat-9 development process. 25)

- With the GPDR a success, the Ground System can now proceed to the Critical Design Review, which is planned for Fall 2018 – continuing to ensure the Landsat-9 mission remains on schedule for a launch readiness date of December 2020.

• March 15, 2018: Northrop Grumman (former Orbital ATK) has been given approval to begin building the NASA Landsat-9 spacecraft after completing a comprehensive design review of the mission. Northrop Grumman is designing and manufacturing the satellite, integrating two science instruments, and supporting launch, early orbit operations and on-orbit check-out of the observatory. 26)

- Representatives from NASA and Northrop Grumman successfully completed a rigorous Critical Design Review (CDR) demonstrating that the program meets all technical performance measures and requirements. The execution of the design review enables the program to effectively transition into manufacturing and prepare for the assembly, test and launch operations phase of the mission. The Landsat-9 spacecraft will be manufactured and tested at the company’s Gilbert, Arizona, facility and is currently planned for launch in late 2020. The spacecraft will be operated by the U.S. Geological Survey once in orbit.

- The Critical Design Review took place February 26 through March 1 at Northrop Grumman’s facility in Gilbert, Arizona. Landsat-9 will extend the length of the overall Landsat series to half a century, providing the longest continuous record of the Earth’s surface as seen from space. Northrop Grumman has built three other Landsat satellites, including Landsat-8, which was launched in 2013, and is providing high quality images in quantities that surpass mission requirements.

• February 14, 2018: Ball Aerospace delivered the TIRS-2 Flight Cryocooler for the Landsat-9 TIRS-2 (Thermal Infrared Sensor-2) instrument ahead of schedule to NASA/GSFC (Goddard Space Flight Center). Achieving this milestone early will allow GSFC additional time and options during the instrument integration and test phase. 27)

- For more than 45 years, Landsat Earth-observing satellite missions have gathered multispectral imagery from space, helping scientists understand the impacts of human activity and natural events on our planet through constant monitoring of land changes. The TIRS-2 instrument aboard Landsat-9 will provide two-band thermal imaging data to measure surface temperature and track land and water usage. The Ball-built cryocooler on the instrument enables TIRS-2 to cool the focal plane and the surrounding enclosure to maintain the sensitivity needed for imaging.

- The TIRS-2 Flight Cryocooler is based upon a Ball family of Stirling Cryocoolers, which are the nation's largest capacity, highest efficiency cryocoolers on orbit to date. The two-stage Flight Cryocooler consists of two CCEs (Cryogenic Control Electronics), one RSE (Redundancy Switch Electronics), a TMU (Thermo Mechanical Unit) and a flight harness set. For TIRS-2, Ball developed redundant electronics and incorporated many design and manufacturing improvements to simplify the fabrication and assembly process.

• December 19, 2017: The USGS and NASA have selected a new Landsat science team, whose primary responsibility is to conduct Landsat-based scientific research and engineering studies, develop useful data products and applications and share the results of its work with the USGS, NASA and others — members will serve a five-year term from 2018 to 2023. 28) 29)

- The new team will conduct scientific research on technical issues critical to the success of the overall Landsat mission, including topics related to data acquisition, product access and formats, new science datasets, practical data applications to be derived from an operational system and other science opportunities for new and past-generation Landsat data.

- Members will evaluate the quality of data when Landsat 9 is launched, which is estimated for December 2020, and help ensure that Landsat 9 data can be successfully integrated into the overall Landsat record. They will also be on the ground floor of discussions for future Landsat missions. In addition, the new team may be called on to assess the viability of Landsat 7 data for scientific or operational purposes as the satellite nears its nineteenth year in orbit. They will also be responsible for looking at opportunities to develop new and advanced applications of Landsat data.

- Previous Landsat Science Teams helped increase the ease of use and expand the utility of Landsat data for users across the nation; greatly increased the size of the Landsat archive by transferring historical data held by international cooperators; and advanced the breadth and accuracy of applications of the 45-year Landsat record.

- Dr. Martha Anderson and Dr. Feng Gao, USDA Agricultural Research Service — Characterizing crop water use, phenology and yield at field scales using multi-sensor data fusion

- Mr. Noel Gorelick, Google — Driving cloud-based usage of Landsat with Google Earth Engine

- Dr. Matthew Hansen, University of Maryland — Generating time-series maps that accurately reflect land change area: A strategy for global land monitoring

- Dr. Sean Healey, U.S. Forest Service — Landsat science and applications in the U.S. Forest Service

- Dr. Patrick Hostert, Humboldt University of Berlin — Synergies between future Landsat and European satellite missions, from land cover to land use

- Dr. Justin Huntington, Desert Research Institute — Towards the development and integration of Landsat evapotranspiration ensembles and climate data for enhanced water and land management decision support

- Mr. David Johnson, USDA National Agricultural Statistics Service — Leveraging analysis ready Landsat products for use in crop production estimation

- Dr. Leo Lymburner, Geoscience Australia — Digital Earth Australia

- Dr. Alexei Lyapustin, NASA Goddard Space Flight Center — Advanced atmospheric correction of Landsat 8/Sentinel 2 data using algorithm Multiangle Implementation of Atmospheric Correction

- Dr. Nima Pahlevan, Science Systems and Applications, Inc. — Landsat-Sentinel-2 constellation for monitoring aquatic systems across the United States

- Mr. Jean-Francois Pekel and Dr. Peter Strobl, European Commission Joint Research Centre — Copernicus Landsat convergence, architecture and applications

- Dr. Volker Radeloff, University of Wisconsin — Landsat data for biodiversity science and conservation

- Dr. David Roy, South Dakota State University — Pathfinding near real time moderate resolution land surface monitoring, looking forward to an operational Landsat 9/10 Sentinel 2A/2B era

- Dr. Ted Scambos, University of Colorado — Landsat and the cryosphere: Tracking interactions between ice, snow and the earth system

- Dr. Crystal Schaaf, University of Massachusetts, Boston — Global 30 m snow and snow-free land surface albedo from Landsat and Moderate Resolution Imaging Spectroradiometer/Visible Infrared Imaging Radiometer Suite

- Dr. Eric Vermote, NASA Goddard Space Flight Center — Maintenance and refinement of the Land Surface Reflectance Code for Landsat and Sentinel 2

- Dr. Curtis Woodcock, Boston University — New opportunities using the Landsat temporal domain: Monitoring ecosystem health, condition and use

- Dr. Michael Wulder, Canadian Forest Service — Integrating time and space with Landsat to learn from the past, monitor the present and prepare for the future

- Dr. Zhe Zhu, Texas Tech University — Toward near real-time monitoring and characterization of land surface change for the conterminous United States

Table 2: The 2018-2023 USGS-NASA Landsat Science Team members and their areas of study

• December 7, 2017: Landsat-9 has entered its implementation phase, or “Phase C” of its project lifecycle after successfully passing Key Decision Point C (KDP-C). The Landsat-9 project team garnered high praise from NASA Headquarters’ APMC (Agency Program Management Council) for the project’s exemplary mission formulation performance and for the lockstep collaboration with its partner agency, the U.S. Geologic Survey. 30)

- The implementation phase of the Landsat-9 project lifecycle will be dominated by the fabrication and testing of the Landsat-9 instruments and spacecraft; this phase will last approximately 24 months and will be followed by the observatory integration phase.


Figure 11: A timeline of the Landsat-9 mission development and lifecycle (image credit: NASA) 31)

Mission Schedule and Lifecycle (Figure 11): NASA-managed satellite builds have a mission lifecycle that is divided into incremental phases. Phase A is concept and technology development; Phase B is preliminary design and technology completion; Phase C is final design and fabrication; Phase D is system assembly, integration/testing, and launch readiness; Phase E starts after on-orbit operational checkout and ends at the mission’s operational end. 32)

• September 24, 2017: The USGS awarded the prime contract to General Dynamics Mission Systems, with a.i. solutions as one of the subcontractors. Under this contract, General Dynamics will continue to operate Landsat-8 from the existing mission operations center at the GSFC (Goddard Space Flight Center) and will begin design and integration of a new Landsat Multi-satellite Operations Center at GSFC. 33)

- Under the requirements of the contract, a.i. solutions will provide key flight dynamics and mission planning for the ongoing Landsat-8 mission, develop the flight dynamics component of the ground system that will launch and operate on Landsat-9 as well as transition Landsat-8 to the new flight dynamics system once complete.

• September 18, 2017: The Landsat-9 satellite mission team completed a successful Mission PDR (Preliminary Design Review) last week. During the review, the mission team demonstrated to an independent Standing Review Board that all design plans for the Landsat-9 mission are both sound and well integrated. - The PDR is the last milestone before the major Key Decision Point C, scheduled for December 2017, after which the mission officially enters its implementation phase. The review took place from September 12-15 at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 34)

• August 10, 2017: The Landsat-9 spacecraft passed an important progress evaluation milestone in mid-July. The PDR (Preliminary Design Review) for the Orbital ATK-sourced spacecraft was held from July 18–20 in Gilbert, Arizona at the satellite fabricator’s facility. 35)

- NASA concluded that the Landsat 9 spacecraft is on track and meeting all of the system and schedule requirements needed for the mission’s planned December 2020 launch.

• February 28, 2017: The Landsat-9 TIRS-2 (Thermal Infrared Sensor-2) team at the NASA/GSFC (Goddard Space Flight Center) has successfully completed their ICDR (Instrument Critical Design Review). 36)

• February 27, 2017: USGS and NASA officials will participate in the Landsat-9 SSRR (Spacecraft System Requirements Review) February 28 and March 1 at the Orbital ATK facility in Gilbert, Arizona. 37)

- An independent panel will review the work of the spacecraft vendor to understand system requirements in a number of areas, including being able to control the orientation of Landsat 9 through attitude control, how much redundancy is built into the spacecraft, and how much fuel will be onboard.

- Reviewers will also look at fault management capabilities, which include hardware and software features used to address any potential problems that may arise in orbit. This is the final such review before full-scale spacecraft design and development begins.

• On November 30 – December 1, 2016, USGS EROS hosted the Landsat-9 GSRR (Ground System Requirements Review) in Sioux Falls, SD. This was the first in a series of major project reviews for Landsat-9, which is scheduled for launch December 2020. The GSRR included presentations given to a joint NASA/USGS review panel on the proposed components of the Landsat-9 Ground System. At the conclusion of the review, the panel approved the Landsat-9 Ground System team to proceed to the PDR (Preliminary Design Review) stage. 38)

• Oct. 25, 2016: NASA has awarded a delivery order under the Rapid Spacecraft Acquisition III (Rapid III) contract to Orbital ATK for the Landsat 9 spacecraft. This contract is a 5-year, firm fixed-price delivery order for the purchase of the Landsat-9 spacecraft in the amount of $129.9 million. Orbital will design and fabricate the spacecraft, integrate the mission’s two government-furnished instruments, and conduct satellite-level testing, in-orbit satellite checkout, and mission operations support. The work will be performed at the contractor’s facilities and at the launch site at Vandenberg Air Force Base in California. 39)

• May 17, 2016: NASA has awarded a sole source contract to BATC (Ball Aerospace and Technology Corporation) of Boulder, Colorado, for the TIRS-2 (Thermal Infrared Sensor-2) instrument Cryocooler for Landsat-9. 40) — TIRS-2 is being upgraded to a Class B instrument, with additional steps being taken to fix the straylight issue affecting the Landsat-8 TIRS instrument.

• On March 4, 2015, the Landsat-9 project was officially directed to initiate activities with strong support from Administration, Congress, NASA, and USGS (Ref. 2).


Figure 12: Overview of spectral band coverage in various missions (HyspIRI, Sentinel-2 of ESA, Landsat-8 and Landsat-7 (image credit: NASA)

What Makes Landsat-9 a Science-Grade Satellite?

Scientific studies rely on science-grade instruments—instruments that record information reliably and accurately. Studying long-term changes to Earth’s surface requires carefully calibrated observations to measure subtle changes occurring over decades. The Landsat-9 mission will extend the data record of Earth observations and advance the scientific study of land change and land use into the next half-century. Consistency in Landsat’s spatial resolution, calibration, and spectral characteristics over four decades allows long-term, consistent comparisons of historical and current data.

1) Spectral Coverage: For a science-grade instrument, the ability to have broad spectral coverage—the ability to see parts of the light spectrum beyond the visible and VNIR (Near Infrared ) — is essential. Landsat-9 will collect data in three shortwave infrared bands and two thermal infrared bands, in addition to VNIR. These longer wavelength bands play a vital role in water use measurements (evapotransporation), fire scar mapping, volcanic lava flow mapping, and other indices used for land use monitoring.

Because of optical diffraction, the ability to image features at longer wavelengths requires progressively larger telescope apertures. In addition, multiple types of detectors (or even separate instruments) may be required to cover the full spectral range. Thermal detectors must be cooled to very low temperatures (-150º C) in order to be sensitive to the low radiance levels emitted at normal Earth temperatures, which in turn necessitates coolers that can cool to cryogenic temperatures.

2) Accuracy: Radiometric resolution and geometric fidelity: We use the term “science-grade” a lot when describing Landsat’s instruments. What we mean by this is that the data collected by Landsat satellites have very strict levels of accuracy that they must live up to—the radiation measurements must be reliable for each of the Landsat spectral bands.

This reliability is what makes comparisons of Landsat data day-to-day, year-to-year and sensor-to-sensor possible. To do scientific research you need to know you can make accurate comparisons.

Radiometric resolution is the ability to measure small differences in radiation over a wide range of brightness levels and geometric fidelity is the ability to know exactly where any given pixel is located. Large optics help by mitigating stray light and ensuring focal plane uniformity (i.e. sameness across the field of the tens-of-thousands of detectors which the telescope focuses light on) to avoid skewed measurements.

The Landsat-9 instruments provide radiometric calibration via onboard sources (blackbody, lamps) and a solar-diffuser system for the reflective bands. Additionally, every full Moon, Landsat-9 (like Landsat-8) will be turned toward the Moon to scan the distant lunar surface multiple times. Since the Moon has no atmosphere, it is the perfect consistent source of light to measure–like a gray card for calibrating a camera’s exposure. Data from the Moon is used to both complement and corroborate the results from the other on-board calibration activities.

3) Redundancy: Live long and be precise: Landsat-9 must have sufficient redundancy to ensure the collection of science-grade data over a 5-year mission life. This means that many critical components have a redundant counterpart to minimize the risk of a single point failure. For example, Class B missions like Landsat-9 typically have two of almost every kind of electronics on board (e.g., spacecraft computers, communications electronics, attitude control electronics, instrument control electronics), extra reaction wheels, and extra thrusters. In the event that some primary piece of equipment on the satellite experiences an anomaly that impacts its performance, ground controllers can switch over to the backup unit on the satellite to do the job. But implementing redundancy comes at the expense of higher cost and longer development time, and it also tends to make things bigger and heavier. So a critical element of mission design is performing detailed reliability and risk assessments to determine where redundancy might be most beneficial, and then implementing redundancy as efficiently as possible to provide the needed level of reliability.

Launch: Landsat-9, a NASA satellite built to monitor the Earth’s land surface, successfully launched on 27 September 2021 at 2:12 p.m. EDT (18:12 UTC) from Vandenberg Space Force Base in California. 41)

A joint mission with the U.S. Geological Survey (USGS), Landsat-9 lifted off on a United Launch Alliance Atlas V rocket from Vandenberg’s Space Launch Complex 3E. Norway’s Svalbard satellite-monitoring ground station acquired signals from the spacecraft about 83 minutes after launch. Landsat-9 is performing as expected as it travels to its final orbital altitude of 438 miles (705 km).

“Today’s successful launch is a major milestone in the nearly 50-year joint partnership between USGS and NASA who, for decades, have partnered to collect valuable scientific information and use that data to shape policy with the utmost scientific integrity,” said Secretary of the Interior Deb Haaland. “As the impacts of the climate crisis intensify in the United States and across the globe, Landsat 9 will provide data and imagery to help make science-based decisions on key issues including water use, wildfire impacts, coral reef degradation, glacier and ice-shelf retreat, and tropical deforestation.”

Secondary (or rideshare) payloads: Four CubeSats for NASA’s 37th Educational Launch of Nanosatellites (ELaNa 37) mission and the Mission Manifest Office at the U.S. Space Force Space Systems Command will begin separating from Centaur at approximately T+plus 2 hours, 14 minutes. The CubeSats are carried on the Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA) Flight System, or EFS. It is a ring positioned below the Landsat-9 and above the top of Centaur carrying the four science and national security CubeSats. 42)

ULA's four-meter-diameter metallic payload fairing, built at the company's facility in Harlingen, Tex., protects Landsat-9 and the CubeSats during ascent through Earth's atmosphere. The longest of available Atlas V four-meter fairings will be used, known as the Extra Extended Payload Fairing (XEPF).

• CUTE (Colorado Ultraviolet Transit Experiment), a 6U CubeSat astronomy mission of the University of Colorado at Boulder, Boulder, Colorado.

• CuPID (Cusp Plasma Imaging Detector), a 6U CubeSat space weather science mission of Boston University, Boston Massachusetts.

• CM1 (Cesium Mission 1) of CesiumAstro with two 6U CubeSats (CM1 and CM2), a technology demonstration mission.


Figure 13: The United Launch Alliance (ULA) Atlas V rocket with the Landsat 9 satellite onboard launches, Monday, Sept. 27, 2021, from Space Launch Complex 3 at Vandenberg Space Force Base in California. The Landsat 9 satellite is a joint NASA/U.S. Geological Survey mission that will continue the legacy of monitoring Earth’s land and coastal regions (image credit: NASA/Bill Ingalls)

Orbit of Landsat-9: Sun-synchronous near-circular orbit, altitude = 705 km, inclination = 98.2º, period = 99 minutes, repeat coverage = 16 days. The Landsat-9 satellite will be in coplanar orbit with Landsat-8, 180º apart. This reduces the repeat coverage to 8 days.


Figure 14: Flight profile of the Landsat-9 mission (image credit: ULA) 43)

Orbit of secondary (or rideshare) payloads: After deployment of Landsat-9, the Centaur stage will reignite its engine two times to maneuver into a different orbit for separation of four small CubeSat rideshare payloads. The CubeSats will be delivered into a near-circular sun-synchronous orbit of 550 km altitude with an inclination of 97.6º.

After launch, Landsat-9 will move into the current orbit of Landsat-7, which has sufficient fuel to operate into 2021, and will subsequently be decommissioned. Landsat-9 will image the Earth every 16days in an 8-day offset with Landsat-8. Landsat-9 will collect as many as 750scenes per day, and with Landsat-8, the two satellites will add nearly 1,500 new scenes a day to the USGS Landsat archive. Landsat9 will increase the volume of the USGS archive by imaging all global landmasses and near-shore coastal regions, including islands at solar elevation angles greater than 5º that were not always routinely collected prior to Landsat-8 (Ref. 31).

Sensor complement (OLI-2, TIRS-2)

The two NASA science instruments are OLI-2 and TIRS-2. OLI-2 is being constructed by BATC (Ball Aerospace & Technology Corp.), while TIRS-2 is being developed by NASA’s Goddard Space Flight Center.

Landsat-9 will fly near-identical copies of the OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) instruments that were flown on Landsat-8. The TIRS instrument will be upgraded to a risk class B implementation, whereas no changes are planned for OLI. With respect to the Landsat-9 project, these instruments will be referred to as OLI-2 and TIRS-2.

In the four+ decades since Landsat-1 launched, the spectral bands of the Landsat satellites have evolved. Landsat-9, like Landsat-8, has the most evolved of the Landsat spectral bands. 44)

In 1972, Landsat-1 launched with a three-band RBV (Return Beam Vidicon) camera system and a secondary four-band digital MSS (Multispectral Scanner System). The MSS with its scanning mirror whisking back and forth to create an image, seemed to many researchers of the period the antithesis of the high quality camera systems traditionally used in aerial studies. But the secondary MSS instrument proved itself the imaging powerhouse producing superior data. But the four-band MSS was spectrally coarse; it essentially mimicked the color infrared films that became widely used during WWII (World War II).

For follow-on sensors, Landsat management brought together scientists from diverse fields to discuss and recommend spectral channels most useful for answering questions in their research areas. These discussions informed the more sophisticated TM (Thematic Mapper) sensor with its seven spectral bands that flew on the Landsat missions-4 and -5. The Landsat TM band placement has subsequently guided all successive Landsat sensors and is is also echoed in almost all modern passive remote sensing systems—domestic, international, public, commercial, and even those circling about other planets.


Figure 15: MSS aboard Landsats 1–5 had four bands. TM (Thematic Mapper) aboard Landsats-4 & -5 had seven bands. Landsat-7’s ETM+ (Enhanced Thematic Mapper Plus) has 8 bands and Landsats-8 &-9 have 11 bands. The atmospheric transmission values for this graphic were calculated using MODTRAN for a summertime mid-latitude hazy atmosphere (circa 5 km visibility), image credit: NASA

Today, Landsat-8 has and Landsat-9 will have eleven spectral bands acquired by the OLI/TIRS and OLI-2 / TIRS-2 instruments, respectively. These new bands help scientists measure high, thin clouds and water quality.

The previous generation sensor, ETM+, supports 8-bit data products, which means means the brightest to the darkest pixels are discriminated with 256 data values. The greater sensitivity of OLI, OLI-2, TIRS, and TIRS-2 instruments allow the signal to be discriminated over 4096 data values (12 bits), and the range has been increased to prevent saturation of very bright targets such as snow.

Band No


Min lower band edge (nm)

Max upper band edge (nm)

Center wavelength (nm)

Max spatial resol. at nadir (m)


Coastal / Aerosol

































































Table 3: Specification of the OLI-2 and TIRS-2 spectral band requirements

OLI-2 (Operational Land Imager-2)

OLI-2 will continue observations in the visible, near infrared, and shortwave infrared portions of the electromagnetic spectrum and includes two new spectral bands, one of which is designed to support monitoring of coastal waters and the other to detect previously hard to see cirrus clouds that can otherwise unknowingly impact the signal from the Earth’s surface in the other spectral bands. 45)

The spatial resolution of its images will be 15 m for the panchromatic band and 30 m for the multispectral bands. The image swath will be 185 km wide, covering wide areas of the Earth’s landscape while providing sufficient resolution to distinguish land cover features like urban centers, farms, and forests. Landsat-9’s near-polar orbit precesses at the same rate the Earth rotates around the sun, allowing the entire Earth to fall within view every 16 days at the same local solar time.

OLI-2 will, to the extent possible, be a copy of OLI for Landsat-9 to maintain data continuity with Landsat-8 and to minimize cost and risk (Ref. 2).


Figure 16: A diagram of OLI-2 showing its main components (image credit: NASA)

Instrument design: The OLI-2 is a pushbroom sensor. Its focal plane features long arrays of photosensitive detectors. Incident radiation is focused onto the focal plane by a four-mirror anastigmatic telescope. OLI-2 has a 15ºFOV covering a 185 km across-track ground swath.

Landsat-9’s photosensitive detectors are divided into 14 modules. There are ~7000 across-track detectors for each OLI-2 spectral band, except the 15 m panchromatic band that has 13,000 detectors. Each spectral band has a specific filter; together the filters are arranged like a “butcher-block” over each module’s detector array. The visible and near-infrared detectors are made from Silicon PIN (SiPIN). The shortwave infrared detectors are made from Mercury–Cadmium–Telluride (MgCdTe).

The OLI-2 telescope will view the Earth through its Earth-view baffle. There is a shutter wheel assembly between the Earth-view baffle and the aperture stop. Light enters the telescope via a hole in the shutter wheel during nominal observations. The solar-view baffle is occasionally pointed at the sun so that a diffuser panel can reflect solar illumination into the telescope for calibration purposes. Two lamp assemblies with six small lamps each inside an integrating hemisphere can illuminate the full OLI-2 focal plane through the telescope with the shutter closed as another component of the OLI-2 calibration subsystem.


Figure 17: Drawing of the OLI-2 focal plane showing the 14 detector modules; the “butcher-block” filters are the striped black boxes where the upper and lower detector modules meet (image credit: BATC)

TIRS-2 (Thermal Infrared Sensor-2)

TIRS-2 will be a rebuild of the Landsat-8 TIRS except TIRS-2 will be upgraded to Risk Class B for Landsat-9. The primary Risk Class B improvements are (Ref. 2):

• Redundant MEBs (Main Electronics Boxes)

• Redundant CCEs (Cryocooler Electronics)

• Redundant RSEs (Switch Electronics).

Other TIRS-2 improvements:

• Improved stray light performance through improved telescope baffling

• Improved position encoder for scene select mirror to address problematic encoder on Landsa- 8 TIRS

• Improved thermal blanketing to better protect from micrometeorite impact; in accordance with new GSFC guidelines.

The TIRS-2 instrument is a two-band thermal imaging sensor with a push broom sensor (like OLI-2). Its focal plane has long arrays of photosensitive detectors.

The instrument features a four-element refractive telescope that focuses an f/1.64 beam of thermal radiation onto a focal plane that is cryogenically cooled. TIRS-2 has a 15º FOV to match the 185 km across-track swath of OLI-2. The TIRS-2 focal plane holds three modules with QWIP (Quantum Well Infrared Photodetector) arrays arranged in an alternating pattern along the focal plane centerline.

Spectral filters cover each focal plane module to create TIRS-2’s two specified bandwidths. Each QWIP array is 640 detectors long in cross-track allowing for overlap between the arrays to produce an effective linear array of 1850 pixels spanning across the 185 km ground swath.

The FOV is flipped between nadir (Earth) and both an internal blackbody and a deep space view used for on-orbit radiometric calibration using a mirror controlled by a scene select mechanism. This allows the view to be changed without changing the nominal Earth-viewing attitude of the Landsat-9 spacecraft.

A two-stage mechanical cryocooler will cool TIRS-2’s focal plane. This permits the QWIP detectors to function at their required temperature of 43 K (-230° C). There will be two radiators mounted to the side of the TIRS-2 instrument structure. One dissipates heat from the cryocooler and the other passively maintains a constant TIRS-2 telescope temperature of 185 K (-88° C).


Figure 18: A diagram of TIRS-2 showing its main components (image credit: NASA)


Figure 19: Left: The TIRS-2 focal plane: the 3 squares in the center of the circuit board are QWIPs. Each QWIP can measure 327,680 pixels. The QWIPs on TIRS-2 will detect two narrow segments of the thermal infrared spectrum. Right: The TIRS-2 cryocooler will look like the one above (image credit: NASA)

Ground Segment:

On November 30 – December 1, 2016, the USGS EROS hosted the Landsat-9 GSRR (Ground System Requirements Review) in Sioux Falls, SD (South Dakota). This was the first in a series of major project reviews for Landsat-9, which is scheduled for launch in December 2020. The GSRR included presentations given to a joint NASA/USGS review panel on the proposed components of the Landsat-9 Ground System. At the conclusion of the review, the panel approved the Landsat-9 Ground System team to proceed to the PDR (Preliminary Design Review) stage. 46)


Figure 20: Landsat-9 operations concept architecture - identical to Landsat-8 (image credit: USGS)

The ground segment consists of the following elements (Ref. 3):

1) MOC (Mission Operations Center) with the following functions: Command & telemetry, Trending & analysis, Flight dynamics, Science acquisition planning, Primary and backup MOCs at GSFC.

- FOT (Flight Operations Team) performs mission planning and scheduling, command and control, health and status monitoring, orbit and attitude maintenance, mission data management.

- NASA provides MOC and BMOC facility at GSFC as well as NASA institutional services (SN, NEN, NISN, FDF) through on-orbit acceptance.

2) Operations Flight Operations Team:

- NASA leads (USGS supports) mission operations readiness activities, pre-launch, launch and early orbit activities.

- USGS leads operations following on-orbit acceptance.

3) DPAS (Data Processing and Archive System) with the following functions: Provides data ingest, product generation, & image assessment/processing, User Portal web interface for data discovery, product selection & ordering (for Cal/Val), & product distribution Storage and archive services.

- DPAS facility at USGS EROS Center.

4) GNE (Ground Network Element) with the following functions: Ground stations/antennas for X-band image & S-band telemetry data downlink; Generation of S-band command uplink.

- LGN (Landsat Ground Network) stations provide X- and S-band communications with the Observatory.

- LGN stations in Sioux Falls, SD; Fairbanks, AK; and Svalbard, Norway.

- DCRS (Data Collection and Routing Subsystem) gathers mission data from LGN stations into complete intervals to transfer to the DPAS.


Figure 21: USGS/EROS facilities in Sioux Falls, SD (image credit: USGS)

Development status of Landsat-9 Ground Segment

• February 19, 2019: The Landsat-9 Ground System development team members executed the first of a series of GRTs (Ground Readiness Tests) this week as they successfully simulated the communication of command and telemetry data between the GNE (Ground Network Element) at EROS and the LMOC (Landsat Multi-Satellite Operations Center) at the Goddard Space Flight Center. 47)

- In what was called GRT One, ground system engineers and operations team members used simulators to test the ability of the LMOC system and GNE system to talk with each other, communicating both simulated commands for actions by the spacecraft, but also retrieving and sharing with each other simulated telemetry data related to the health and safety of the satellite.

- The GNE is the element of the ground system that includes the hardware, software, and networks necessary to receive data from the spacecraft. It relies on a variety of ground stations around the globe to assist with those communications, though this week’s test focused only on the station at EROS and the LMOC.

- The LMOC is an element of the ground system as well. It receives and monitors spacecraft telemetry, ensures its health and safety, and sends commands to the satellite. While the LMOC utilizes some of the Landsat-8 software subsystems, the LMOC is new, and this initial test is a significant accomplishment for the incremental delivery of the Landsat-9 ground system.

- That the exercise was a success didn’t surprise Brian Sauer, the USGS EROS Landsat-9 Project Manager. A significant amount of effort and preparation went into the test. The two elements conducted lower-level tests to verify their associated requirements. Following element tests, the system was installed into the operations environment, and L-9 Ground System staff conducted a series of Interface Connectivity Tests to ensure the systems could communicate with each other, commands could be sent, and data were able to flow. That was followed by several dry runs in January, and a Test Readiness Review conducted Feb. 8, Sauer said.

- “We know what requirements are supposed to be verified from the tests, and we completed dry runs for the tests. So, if the run for the record (for the GRT) would not have been a success, that would have been a surprise,” he said.

- The test wasn’t only about verification; it was also an early training opportunity for staff members who will operate the system. The test is conducted by ground system Integration and Test (I&T) engineers and executed by the staff who will operate the system when interfacing with the satellite. In fact, to the extent possible, it follows the “test as you fly” principle—operators run the system as they would when the spacecraft is in flight.

- GRT One also included Quality Assurance monitors who ensured that processes and procedures were correctly followed for the test, and that documentation was appropriate for those processes and procedures.

- Sauer said GRT One only covered initial commanding and did not include the full command suite. The additional tests will take place in upcoming GRTs, the next which is penciled in now for August. GRTs are expected to be ongoing for the next 14 months, he said. “The success of this GRT truly is a credit to the all of the people on the Landsat-9 Ground System team,” Sauer said. “Contractors, government, everyone... it really is a team effort.”

1) ”Landsat-9 — continuing the legacy - 2020 and beyond,” NASA, URL:

2) Del Jenstrom, Jim Nelson, ”Landsat 9 Project Briefing to the Landsat Science Team,” NASA, USGS, January 13, 2016, URL:

3) Del Jenstrom, Jim Nelson, ”Landsat 9 Project Briefing to the Landsat Science Team,” NASA/GSFC, USGS/EROS, July 26, 2016, URL:

4) Michael A. Wulder, Thomas R. Loveland, David P. Roy, Christopher J. Crawford, Jeffrey G. Masek, Curtis E. Woodcock, Richard G. Allen, Martha C. Anderson, Alan S. Belward, Warren B. Cohen, John Dwyer, Angela Erb, Feng Gao, Patrick Griffiths, Dennis Helder, Txomin Hermosilla, James D. Hipple, Patrick Hostert, M. Joseph Hughes, Justin Huntington, David M. Johnson, Robert Kennedy, Ayse Kilic, Zhan Li, Leo Lymburner, Joel McCorkel, Nima Pahlevan, Theodore A. Scambos, Crystal Schaaf, John R. Schott, Yongwei Sheng, James Storey, Eric Vermote, James Vogelmann, Joanne C. White, Randolph H. Wynne, Zhe Zhu,”Current status of Landsat program, science, and applications,” Remote Sensing of Environment, Volume 225, Pages 127-147,, Published online: 11 May 2019, URL:

5) Brian L. Markham, Del Jenstrom, Jeffrey G. Masek, Phil Dabney, Jeffrey A. Pedelty, Julia A. Barsi, Matthew Montanaro, ”Landsat 9: Status and Plans,” white paper, 2016, URL:

6) Steve Cole, “NASA, USGS Begin Work on Landsat 9 to Continue Land Imaging Legacy,” NASA, Release 15-061, April 16, 2015, URL:

7) Michael H. Freilich, ”NASA Earth Science Division: Status, Plans, Accomplishments,” NASA, 27 July 2015, URL:

8) As of June 6, 2018, Northrop Grumman Innovation Systems (NGIS) has closed the acquisition of Orbital ATK Inc.

9) ”NASA green lights key phase for Landsat-9’s development,” NASA, Oct. 25, 2016, URL:

10) ”Orbital ATK Continues Landsat Legacy with Contract for Landsat 9,” Orbital ATK, URL:

11) Stephen Clark, ”Landsat 9 lifted atop launcher to extend unbroken environmental data record,” Spaceflight Now, 21 September 2021, URL:

12) Jeff Foust, ”Liquid nitrogen shortage delays Landsat 9 launch,” SpaceNews, 31 August 2021, URL:

13) Tylar Greene, Jake Richmond, ”NASA Unveils New Interactive Website Ahead of Landsat 9 Launch,” NASA Press Release 21-110, 16 August 2021, URL:

14) Brian L. Markham, Cody H. Anderson, Michael J. Choate, Christopher J. Crawford, Del T. Jenstrom, Jeffrey A. Masek, Jeffrey A. Pedelty, Brian K. Sauer, and Kurtis J. Thome "Landsat 9: ready for launch", Proceedings of SPIE, Volume 11829, Earth Observing Systems XXVI, 118290J (1 August 2021), SPIE Optical Engineering +Applications, San Diego, CA, USA;

15) ”Landsat 9 Continuing the Legacy - 2021 and beyond,” NASA Landsat Science, 14 August 2020, URL:

16) Jeffrey G. Masek, Michael A. Wulder, Brian Markham, Joel McCorkel, Christopher J. Crawford, James Storey, Del T. Jenstrom, ”Landsat 9: Empowering open science and applications through continuity,” ScienceDirect, Remote Sensing of Environment, Volume 248, October 2020, 111968,

17) ”Landsat 9 Ground System and Mission Operation Plans Well on Track for Launch,” NASA, 3 April 2020, URL:

18) ”Remote Presentations No Problem for Successful Landsat 9 Mission Operations Review,” USGS, 9 April 2020, URL:

19) Sara Blumberg, ”Landsat 9: The Pieces Come Together,” NASA, 9 January 2020, URL:

20) Kate Ramsayer, Sara Blumberg, ”Landsat 9 Instrument Ready for Spacecraft Assembly,” NASA Feature, 27 September 2019, URL:

21) Kate Ramsayer, Sara Blumberg, ”New Landsat Infrared Instrument Ships from NASA,” NASA, 23 August 2019, URL:

22) ”Northrop Grumman Completes Orbital ATK Acquisition, Blake Larson Elected to Lead New Innovation Systems Sector,” Northrop Grumman News, 6 June 2018, URL:

23) ”In Focus: A Peek at Landsat 9’s OLI-2 Instrument During Focal Plane Integration,” NASA/GSFC, 23 May 2018, URL:

24) ”Successful Landsat 9 Mission Review,” 25 April 2018, URL:

25) ”Successful Landsat 9 Ground System Review Held,” NASA, 10 April 2018, URL:

26) ”Landsat 9 Spacecraft Passes Latest Critical Design Review,” NASA, 15 March 2018, URL:

27) ”Ball Aerospace Delivers Flight Cryocooler Early for NASA's Landsat Mission,” Ball News Releases, 14 Feb. 2018, URL:

28) ”New USGS-NASA Landsat Science Team Named...,” Satnews Daily, 19 Dec. 2017, URL:

29) ”Next Landsat Science Team Will Pivot to Future of Landsat Program,” USGS, 15 Dec. 2017, URL:

30) ”Landsat 9 Passes Key Decision Point C, Moves on to Implementation Phase,” NASA Landsat Science, 7 Dec. 2017, URL:

31) ”Landsat 9 Fact Sheet,” USGS, May 2019, URL:

32) ”Landsat 9 Mission Details,” NASA, 2017, URL:

33) ”Contract Awarded to Landsat 8/9 Team Member, a.i. solutions,” Satnews Daily, Sept. 24, 2017, URL:

34) ”Landsat 9 Preliminary Design Review Successfully Completed,” Landsat Science, Sept. 18, 2017, URL:

35) ”Landsat 9 Spacecraft Development on Schedule,” Landsat Science, August 10, 2017, URL:

36) ”Landsat 9 Thermal Instrument Passes Critical Design Review,” NASA, Feb. 28, 2017, URL:

37) ”Landsat 9 Spacecraft Systems Review,” NASA, Feb. 27, 2017, URL:

38) ”December 2, 2016 - Landsat 9 Ground System Review,” USGS, Dec. 2, 2016, URL:

39) Steve Cole, Cynthia M. O’Carroll,”NASA Awards Contract for Sustainable Land Imaging Spacecraft,” NASA, Oct. 25, 2016, URL:

40) Cynthia M. O'Carroll, ”Thermal Infrared Sensor-2 Instrument Cryocooler Contract Awarded for Landsat 9,” NASA, May 17, 2016, URL:

41) ”NASA Launches New Mission to Monitor Earth’s Landscapes,” NASA Press Release 21-126, 27 September 2021, URL:

42) ”Landsat 9: Payloads stacked atop Atlas V for launch,” ULA, 16 September 2021, URL:

43) ”Landsat 9 Atlas V,” 23 September 2021, URL:

44) ”Landsat 9 Spectral Bands,” NASA, URL:

45) ”Landsat-9 Instruments,” NASA, URL:

46) ”Landsat 9 Ground System Review,” USGS, Dec. 2. 2016, URL:

47) ”First in a Series of Landsat 9 Ground Readiness Tests is Successful,” USGS, 15 February 2019, URL:

The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: ”Observation of the Earth and Its Environment: Survey of Missions and Sensors” (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (

Spacecraft   Launch    Sensor Complement   Ground Segment   References   Back to Top