Skip to content
eoPortal

Other Space Activities

Orbital Debris

Apr 24, 2017

Space Situational Awareness

Orbital Debris — with Themes: Space Debris Meaurements, Active Debris Removal, Sustainable Future, and First Laser Detection of Space Debris

Space Debris Environment    Space Debris Measurements    Active Debris Removal
Call for sustainable future    First laser detection    References

Overview of Space Debris

Space debris is defined as all the inactive, manmade objects, including fragments, that are orbiting Earth or reentering the atmosphere. In near-Earth space, this debris is more significant than natural meteoroids, except around millimeter sizes, where meteoroids prevail in some orbital regions.

Routine ground-based radar and optical measurements track and catalog objects larger than 5–10 cm in LEO (Low Earth Orbit) and larger than 0.3–1.0 m at GEO altitudes. Some specialized sensors may also detect objects down to sub-cm sizes, but these cannot generally be maintained in catalogs or correlated with specific launch events. The presence of even smaller debris, of typically under 1 mm, can be deduced from impact craters on returned space hardware, or from dedicated in situ impact detectors.

At typical collision speeds of 10 km/s in low orbits, impacts by millimeter-sized objects could cause local damage or disable a subsystem of an operating satellite. Collisions with debris larger than 1 cm could disable an operational satellite or could cause the break-up of a satellite or rocket body. And impact by debris larger than about 10 cm can lead to a catastrophic break-up: the complete destruction of a spacecraft and generation of a debris cloud.

The fragments created by a collision can drive a cascading process, the ‘Kessler syndrome’, in which each collision between objects generates more space debris, which increases the likelihood of further collisions.

Note: The Kessler Syndrome is a theory proposed by NASA scientist Donald J. Kessler in 1978, used to describe a self-sustaining cascading collision of space debris in LEO (Low Earth Orbit). It’s the idea that two colliding objects in space generate more debris that then collides with other objects, creating even more shrapnel and litter until the entirety of LEO is an impassable array of super swift stuff. At that point, any entering satellite would face unprecedented risks of headfirst bombardment. 1)

Large debris objects (such as satellites, spent rocket bodies and large fragments) that reenter the atmosphere in an uncontrolled way can reach the ground and pose a risk to the population. The related risk for an individual is, however, several orders of magnitude smaller than commonly accepted risks in daily life (for example, the risk of serious injury from a motor vehicle accident is about 30 million times higher).

Spacefaring nations are now focusing efforts on controlling the space debris environment. Today, there is a consensus from long-term projections about the onset of a collisional cascading process in LEO. The ultimate goal is to limit this runaway situation, to safeguard future space operations. Mitigation actions have been identified and propagated into international and national standards by various spacefaring nations. Even with strict adherence to these mitigation requirements (which is not yet achieved), it is evident, however, that additional remediation measures will be required in order to limit the number of objects in LEO.

The ‘active removal’ of a number of selected objects per year is needed, but this sets a global challenge that can only be achieved by the joint efforts of all spacefaring nations.

Since the mid-1980s, ESA has been active in every area of research, development, technology and operations related to space debris. Since 2006, the Space Debris Office at ESA/ESOC (European Space Operations Center) in Darmstadt, Germany, has operated as a standalone entity within the Ground Systems Engineering Department of ESA’s Directorate of Operations. The office coordinates the Agency’s research into space debris, as well as coordinating with national research programs, and provides operational services to ESA, its Member States and third parties.

As of April 2017, more than 290 break-ups in orbit have been recorded since 1961. Most were explosions of satellites and upper stages – fewer than 10 involved accidental and intentional collisions.

 


 

Recent News

• February 18, 2022: Debris from a Russian antisatellite weapon demonstration in November are creating surges of close approaches, in some cases tens of thousands in a week, with active satellites in low Earth orbit. 2)

- Such events, dubbed “conjunction squalls” by space situational awareness company COMSPOC, were first noticed in January and stem from the unique circumstances of the Nov. 15, 2021, Russian ASAT test that destroyed the Cosmos 1408 satellite and created thousands of pieces of debris.

Figure 1: A simulation of the Russian ASAT demonstration in November 2021. Much of the debris from that event is in an orbit that periodically lines up with satellites in sun-synchronous orbits [image credit: COMSPOC (Commercial Space Operations Center)]
Figure 1: A simulation of the Russian ASAT demonstration in November 2021. Much of the debris from that event is in an orbit that periodically lines up with satellites in sun-synchronous orbits [image credit: COMSPOC (Commercial Space Operations Center)]

- The squalls can result in thousands of close approaches, or conjunctions, over just a few days. “In the first week of April, in that week alone, there will be 40,000 conjunctions that we predict purely from that one event,” said Travis Langster, vice president and general manager of COMSPOC, during a panel at the 24th annual FAA Commercial Space Transportation Conference Feb. 17.

- Those surges come from the interaction of the Cosmos 1408 debris with constellations of remote sensing satellites. Cosmos 1408 was in an orbit at an inclination of 82.3 degrees, while many remote sensing satellites are in sun-synchronous orbits with inclinations of about 97 degrees. As the orbits precess, the debris overlaps the orbits of remote sensing satellites — but going in the opposite direction.

- “When they sync up, you have the perfect storm: they’re in the same orbit plane but counter rotating, crossing each other twice an orbit, again and again,” said Dan Oltrogge, director of integrated operations and research at COMSPOC, in an interview. Those squalls last for several days until the orbits precess out of sync.

Figure 2: A chart showing the peaks in conjunctions with active satellites in LEO caused by the Russian ASAT debris (image credit: COMSPOC)
Figure 2: A chart showing the peaks in conjunctions with active satellites in LEO caused by the Russian ASAT debris (image credit: COMSPOC)

- COMSPOC first noticed a surge on conjunctions at the beginning of the year, linked to a group or “Flock” of Dove imaging CubeSats operated by Planet. That first surge peaked at about 4,000 daily conjunctions, defined as approaches within 10 kilometers, on Jan. 2. A second conjunction squall, peaking at about 2,000 conjunctions a day Jan. 25, linked to another set of Planet satellites.

- COMSPOC is predicting an even stronger conjunction squall in early April as the debris encounters several Flocks of Planet CubeSats, including a peak of more than 14,000 conjunctions on a single day, April 5. Another squall is predicted with those same CubeSats about six months later, but with a peak only about half as strong as debris spreads out and reenters.

- COMSPOC projects that, in the conjunction squall in early April, conjunctions involving all active satellites in low Earth orbit will peak at nearly 50,000 per day. That includes a background level of about 15,000 per day not associated with the ASAT test.

- However, because many of those satellites are CubeSats, the risk of collisions does not rise as dramatically. While the background average daily collision rate has a background level of about 0.0005, during the surge in early April it reaches a peak of only a little more than 0.0008.

- Spacecraft outside of sun-synchronous orbits will also be affected, such as SpaceX’s Starlink constellation. COMSPOC predicts that, given SpaceX’s threshold of performing automated collision avoidance maneuvers when there is a 1-in-100,000 chance of a collision, the Starlink constellation will perform as many as 80 such maneuvers a day just from Russian ASAT debris, with a peak in early March.

• February 15, 2022: The Chinese government is open to establishing formal lines of communication with the United States on space safety issues after a pair of alleged close calls of Starlink satellites with China’s space station. 3)

- At a Feb. 10 press conference, Zhao Lijian, spokesman for China’s Ministry of Foreign Affairs, reiterated claims the country made to the United Nations in December that it had to maneuver its space station twice in 2021 to avoid close approaches by SpaceX Starlink satellites.

- “China was fulfilling the international obligation stipulated by Article V of the Outer Space Treaty by informing the U.N. of the Starlink satellites’ dangerous approach to the Chinese space station that threatened the safety of in-orbit Chinese astronauts,” he said according to a government transcript, adding that the “in-orbit Chinese astronauts were facing real and urgent safety threats.”

- At the Feb. 10 press conference, Zhou said China was open to more formal lines of communication with the U.S. on space safety. “With a view to protecting the safety of Chinese astronauts and space station, the Chinese side stands ready to establish a long-term communication mechanism with the U.S. side and hopes that the U.S. will take concrete measures to prevent such incident from happening again,” he said.

- The American note verbale does not state how close either Starlink satellite was predicted to come to the space station before China maneuvered the station, and independent analyses have not offered consensus on how close either approach was to the station. A study by COMSPOC found that Starlink satellites account for only about 7% of all close approaches with China’s space station, with the majority coming from debris, including from China’s own anti-satellite weapon test in 2007.

- “These findings suggest that Starlink spacecraft do not place undue flight safety burden on the Tiangong Space Station crew or their flight dynamics staff as compared to other active spacecraft that transit Tiangong’s orbit altitude band,” COMSPOC’s Dan Oltrogge and Sal Alfano concluded in their Jan. 3 assessment. “However, the data highlight the importance of sharing orbit and maneuver information” as recommended by the U.N.’s guidelines for long-term space sustainability.

• November 16, 2021: NASA Administrator Bill Nelson spoke with his Russian counterpart a day after a Russian antisatellite test, as others in the Russian government dismissed the threat to space sustainability that test created. 4)

- Dmitry Rogozin, the director general of Roscosmos, tweeted that he spoke by phone with Nelson. The conclusion of that discussion, he wrote, was that “we are moving on, ensuring the safety of our crews on the ISS, making joint plans.”

- The call took place a day after a Russian direct-ascent ASAT intercepted and destroyed a defunct Russian satellite, Cosmos-1408. The destruction of that test created more than 1,500 pieces of tracked debris, according to U.S. Space Command, and likely a far larger number of smaller, untracked debris objects.

- The Secure World Foundation, an organization devoted to space sustainability issues, noted other countries have also performed destructive ASAT tests. “We call upon the United States, Russia, China, and India to declare unilateral moratoriums on further testing of their antisatellite weapons that could create additional orbital debris and to work with other countries towards solidifying an international ban on destructive ASAT testing,” they said in a Nov. 16 statement.

• November 16, 2021: LeoLabs was alerted early Nov. 15 that something was happening in low Earth orbit. 7)

- Before the Silicon Valley space mapping startup heard of the Russian antisatellite test, its global network of phased array radars detected an object in low Earth orbit that quickly turned into six radar blips, then 31. As of 3 pm eastern time on Nov. 16, LeoLabs was tracking 216 objects larger than 10 centimeters in diameter stemming from the Russian antisatellite test.

- The debris cloud is spreading quickly.

- “We’re seeing it now stretching at least a third of the way around the world,” LeoLabs CEO Dan Ceperley told SpaceNews. Ceperley expects the debris to cloud to spread until it resides in the shape of a shell around Earth because that’s what happened after China’s antisatellite test in 2007 and the 2009 collision of an Iridium commercial communications satellite with a defunct Russian satellite.

- LeoLabs expects to be issuing collision alerts for many years to help satellite operators dodge the new debris field.

- LeoLabs is tracking 17,000 space objects with phased array radars in Alaska, New Zealand, Texas and Costa Rica. The firm is in the process of extending its space-tracking infrastructure to Australia and the Azores archipelago.

Figure 7: In this LeoLabs image, the International Space Station's orbit is depicted in orange. The white circles show debris stemming from the Nov. 15 Russian antisatellite test (image credit: LeoLabs)
Figure 7: In this LeoLabs image, the International Space Station's orbit is depicted in orange. The white circles show debris stemming from the Nov. 15 Russian antisatellite test (image credit: LeoLabs)

- LeoLabs has moved from detecting the cloud of debris created by the antisatellite test to tracking individual pieces of debris and looking for potential collisions with working satellites. The debris is located at altitudes between 440 and 520 kilometers.

- In addition to the debris LeoLabs is tracking, which is softball-size and larger, the U.S. State Department said the strike generated over 1,500 pieces of trackable orbital debris and hundreds of thousands of pieces of smaller debris. The trackable debris is as small as two centimeters in diameter.

• November 15, 2021: The U.S. Government said today that Russia conducted an antisatellite test that generated 1,500 pieces of trackable debris and thousands that are untrackable. The debris threatens not only satellites, but the astronauts and cosmonauts aboard the International Space Station. ISS operations are being affected. The head of Russia’s space agency will meet with NASA officials in Moscow tomorrow at a previously scheduled meeting where this topic is certain to be discussed. 8)

- The first inkling that something was awry came from reports that the ISS crew — two Russians, four Americans, and one European — had to shelter in their Soyuz and Crew Dragon spacecraft earlier today and the orbiting facility was on a path to reencounter the debris every 90 minutes, or once per orbit.

- U.S. Space Command initially issued a statement that they were tracking a debris event, but without attribution as to its cause.

- “U.S. Space Command is aware of a debris-generating event in outer space. We are actively working to characterize the debris field and will continue to ensure all space-faring nations have the information necessary to maneuver satellites if impacted. We are also in the process of working with the interagency, including the State Department and NASA, concerning these reports and will provide an update in the near future.”

- By mid-afternoon, the State Department and the Defense Department both addressed the issue during their daily briefings, but deferred to NASA as to whether the debris affecting the ISS was from the test.

• November 15, 2021: A Russian satellite broke up in low Earth orbit in a deliberate test of a Russian anti-satellite (ASAT) device that created thousands of pieces of debris. 10)

- The satellite, Cosmos-1408, appears to have broken up late Nov. 14 or early Nov. 15 Eastern time, based on commercial and government tracking data. The satellite, weighing about 2,000 kg, was launched in 1982 and, now defunct, was last tracked in an orbit about 485 km high.

Figure 8: The Russian ASAT test destroying Cosmos-1408 drew comparisons to a 2007 Chinese ASAT test that created thousands of pieces of debris still being tracked today image credit: AGI)
Figure 8: The Russian ASAT test destroying Cosmos-1408 drew comparisons to a 2007 Chinese ASAT test that created thousands of pieces of debris still being tracked today image credit: AGI)

- Early Nov. 15, the seven people on the ISS were instructed to shelter in their Crew Dragon and Soyuz vehicles because of a “debris cloud,” remaining in their vehicles for about two hours. That debris cloud has since made several other close approaches to the station, although no damage was reported. The station’s crew resumed some operations later in the day although parts of the station remain sealed off as a precaution against any impacts.

- Hours after the State Department announced the Russian ASAT test, NASA confirmed in a separate statement that it was the debris from that event that required the crew to shelter earlier in the day.

- Before the State Department statement, there was widespread speculation that Cosmos-1408 was the victim of an ASAT test, particularly given notices to airmen filed by Russians for a rocket launch from Plesetsk consistent with a direct-ascent ASAT test.

- “We are tracking this Cosmos-1408 event. Where there used to be one satellite, we now see six radar detections, which could be individual objects, debris or clouds of debris,” said Dan Ceperley, chief executive of LeoLabs, a few hours before the State Department statement. The company later said it was seeing at least 30 distinct objects.

- He later said that his company’s ground-based radars had been tracking Cosmos-1408 as a single object three times a day until detecting multiple objects at 11:20 a.m. Eastern Nov. 15, suggesting that the object broke up within the last day.

- Ceperley was speaking on a panel about space domain awareness at the ASCEND conference by the American Institute of Aeronautics and Astronautics on Nov. 15. Other panelists also weighed in, calling the incident “unfortunate” by increasing the population of debris in LEO.

- That 2007 Chinese ASAT test created debris that continues to be a hazard for the satellites and the International Space Station. Last week, the station performed a debris avoidance maneuver when one piece of debris from that test showed a risk of passing close to the station. While the risk diminished before the time of closest approach, NASA and the other ISS partners elected to go ahead with the maneuver in place of a reboost maneuver originally planned for later this month.

 


 

 

The Space Debris Environment

• May 27, 2021: Imagine driving down a road which has more broken cars, bikes and vans lining the street than functioning vehicles. This is the scene our satellites face in Earth orbit. In fact, since the start of the space age there has been more debris, “space junk”, in orbit than operational satellites. 11)

- So how do we clean up this mess?

- In 2002, a major step was taken to create some rules for our space highways. The Inter-Agency Debris Coordination Committee (IADC) published the Space Debris Mitigation Guidelines, which have since served as the baseline for space policy, national legislation, and technical standards.

- The mitigation measures described in the guidelines set out how ‘space actors’ should design, fly, and vitally dispose of their missions in order to prevent the creation of further debris. They include ‘passivation’; ensuring no explosive fuel is left on-board at the end of a mission's life, performing ‘collision avoidance maneuvers’ to prevent in-space crashes, and the requirement to remove spacecraft from low-Earth orbit within 25 years of the end of their lives, among others.

- So how well is the international community doing? Every year, ESA publishes its Space Environment Report to give a transparent overview of global space activities, estimate the impact of these activities on the environment and determine how well international debris reduction measures are improving the long-term sustainability of spaceflight.

Figure 9: An impressive shot from ESA's latest space debris movie: Time to Act. The launch of Sputnik, humankind’s first satellite, in 1957 marked the dawn of a new era for the people of the 'Pale Blue Dot'. Decades later, our planet is now surrounded by spacecraft carrying out extraordinary work. But they are up against a huge problem, they share space with millions of fragments of fast-moving and dangerous space debris (image credit: ESA)
Figure 9: An impressive shot from ESA's latest space debris movie: Time to Act. The launch of Sputnik, humankind’s first satellite, in 1957 marked the dawn of a new era for the people of the 'Pale Blue Dot'. Decades later, our planet is now surrounded by spacecraft carrying out extraordinary work. But they are up against a huge problem, they share space with millions of fragments of fast-moving and dangerous space debris (image credit: ESA)

In Summary

a) Our current behavior in space is unsustainable. If we continue as we are, the number of objects in orbit will make it hard to safely operate in space at all.

b) The amount of objects in space; including their combined mass and their combined area, is steadily increasing.

c) Improved surveillance technologies in the last decades mean smaller debris objects can be reliably tracked and catalogued. While we know of significant amounts of debris, we cannot necessarily trace back to the events that created them.

d) The kind of objects launched to low-Earth orbit are changing: on average, satellites are getting smaller and are often launched into large constellations of thousands of satellites.

e) On average over the last two decades, 12.5 non-deliberate, debris-creating events have occurred every year.

f) The vast majority of rocket bodies and missions at high altitudes, in ‘geostationary orbit’, are being sustainably disposed of.

g) Behaviors in low-Earth orbit are not changing fast enough: more than half of operators flying at this important altitude make no attempt to sustainably dispose of their missions.

Launching More Than Ever

Figure 10: Plot showing the increasing number of objects in space, from ESA's 2021 space environment report. By every measure, the amount of debris in orbit is increasing – from the number of objects launched to their overall mass and the area they take up. A number of unidentified objects “UI” have also appeared in recent years. The objects are not necessarily new to space, but we are only recently able to observe them. Because of the time between their creation and our observation of them, it is difficult to track their origins to a specific “fragmentation event” (image credit: ESA)
Figure 10: Plot showing the increasing number of objects in space, from ESA's 2021 space environment report. By every measure, the amount of debris in orbit is increasing – from the number of objects launched to their overall mass and the area they take up. A number of unidentified objects “UI” have also appeared in recent years. The objects are not necessarily new to space, but we are only recently able to observe them. Because of the time between their creation and our observation of them, it is difficult to track their origins to a specific “fragmentation event” (image credit: ESA)

Definition of abbreviations in Figure 10: [PL = Payload (the “cargo”: usually one or many satellites that a rocket launches to space); PF = Payload Fragmentation Debris; PD = Payload Debris; PM = Payload Mission Related Object; RB = Rocket Body; RF = Rocket Fragmentation Debris; RD = Rocket Debris; RM = Rocket Mission Related Object; UI = Unidentified.]

Commercial Satellites Sky-Rocket in Low-Earth Orbit

Figure 11: In the last few years there has been an enormous increase in commercial satellites launched to low-Earth orbit. Many of these are being launched into large constellations in order to provide communication services around the globe. While they bring great benefits, they pose a challenge to long-term sustainability. (image credit: ESA)
Figure 11: In the last few years there has been an enormous increase in commercial satellites launched to low-Earth orbit. Many of these are being launched into large constellations in order to provide communication services around the globe. While they bring great benefits, they pose a challenge to long-term sustainability. (image credit: ESA)

The Changing Shape of Space Missions

Figure 12: Less is more: the changing mass of objects launched to low-Earth orbit. The first decades of spaceflight saw large missions launched into near-Earth orbit, with more than half weighing upwards of 1000 kg. Today, such objects are a tiny fraction of the missions launched to space, while the vast majority are smaller satellites with a mass between 100 - 1000 kg (image credit: ESA)
Figure 12: Less is more: the changing mass of objects launched to low-Earth orbit. The first decades of spaceflight saw large missions launched into near-Earth orbit, with more than half weighing upwards of 1000 kg. Today, such objects are a tiny fraction of the missions launched to space, while the vast majority are smaller satellites with a mass between 100 - 1000 kg (image credit: ESA)

Space Operators Nearby are not Doing Enough

Figure 13: The gradual improvement of satellite disposal in low-Earth orbit is not enough. In low-Earth orbit, some “naturally compliant” objects safely burn up in the atmosphere without intervention. However, many others require intervention from the ground - more than half of the space actors operating these make no attempt to sustainably dispose of their missions. While the numbers are improving, it is not fast enough (image credit: ESA)
Figure 13: The gradual improvement of satellite disposal in low-Earth orbit is not enough. In low-Earth orbit, some “naturally compliant” objects safely burn up in the atmosphere without intervention. However, many others require intervention from the ground - more than half of the space actors operating these make no attempt to sustainably dispose of their missions. While the numbers are improving, it is not fast enough (image credit: ESA)

Rockets are now Doing their Job Responsibly

Figure 14: One of the most positive stories in debris mitigation has played out in the last 20 years as rocket bodies – the largest objects we send to space – are now nearly all disposed of sustainably compared to less than 20% at the turn of the millennium. This is because more rockets now perform a “controlled reentry” into Earth’s atmosphere (image credit: ESA)
Figure 14: One of the most positive stories in debris mitigation has played out in the last 20 years as rocket bodies – the largest objects we send to space – are now nearly all disposed of sustainably compared to less than 20% at the turn of the millennium. This is because more rockets now perform a “controlled reentry” into Earth’s atmosphere (image credit: ESA)

Satellites are being Disposed of Responsibly

Figure 15: At 'geostationary altitudes' almost all satellites are being disposed of responsibly. At higher altitudes in the geostationary orbit, mostly used for communication satellites, almost all space actors attempt to sustainably clear their missions from orbit - the vast majority of which do so successfully. This region has become highly commercialized, meaning there are clear financial incentives to keep this important region clear of debris (image credit: ESA)
Figure 15: At 'geostationary altitudes' almost all satellites are being disposed of responsibly. At higher altitudes in the geostationary orbit, mostly used for communication satellites, almost all space actors attempt to sustainably clear their missions from orbit - the vast majority of which do so successfully. This region has become highly commercialized, meaning there are clear financial incentives to keep this important region clear of debris (image credit: ESA)

Our Past is Explosive

Figure 16: The millions of fragments of debris in orbit today are the direct result of 'fragmentation events' in the past. Of the 550 events known to date, those caused by propulsion have created the greatest amount of space debris. Energy left undisposed of on-board a satellite or rocket body can lead to explosions. For this reason, the international space debris mitigation guidelines require that satellites are 'passivated' at the end of their mission - for example by emptying fuel tanks and disconnecting batteries. Over the last two decades, the average number of fragmentation events has remained stable at roughly 12.5 per year. Depending on which type of event is counted this number can be as low as 0.3 events per year; if the lifetime of debris created is taken into account and unexplained events are excluded. The suggestion is that debris creating events not due to collisions, that have a large environmental impact, are still taking place partly due to re-use of a design with known issues (image credit: ESA)
Figure 16: The millions of fragments of debris in orbit today are the direct result of 'fragmentation events' in the past. Of the 550 events known to date, those caused by propulsion have created the greatest amount of space debris. Energy left undisposed of on-board a satellite or rocket body can lead to explosions. For this reason, the international space debris mitigation guidelines require that satellites are 'passivated' at the end of their mission - for example by emptying fuel tanks and disconnecting batteries. Over the last two decades, the average number of fragmentation events has remained stable at roughly 12.5 per year. Depending on which type of event is counted this number can be as low as 0.3 events per year; if the lifetime of debris created is taken into account and unexplained events are excluded. The suggestion is that debris creating events not due to collisions, that have a large environmental impact, are still taking place partly due to re-use of a design with known issues (image credit: ESA)

Our Future Could be Smashing

Figure 17: Conjunction events, and chaser classification, for a set of representative missions in Sun-synchronous orbits over 2020. This plot shows the debris objects large enough to be tracked from the ground that a hypothetical mission would encounter at various altitudes, and where they came from. - A large proportion of debris objects in orbit today are leftover from just a couple “fragmentation events”, namely the infamous collision between satellites cosmos-2251 and Iridium 33 in 2009 which created a huge cloud of debris, as well as various rocket related debris and the intentional explosion of Fengyun 1C in 2007. At lower altitudes, our fictional satellite will frequently encounter smaller satellites and constellations which need to be coordinated. - One vital solution is to ensure functional satellites are able to avoid collision with the debris that crosses their path. The process of ‘swerving’ a satellite out of the way of debris is time consuming but vital, and ESA is working on an automated system that will ensure collision avoidance remains practical as the number of satellites in orbit continues to rapidly increase (image credit: ESA)
Figure 17: Conjunction events, and chaser classification, for a set of representative missions in Sun-synchronous orbits over 2020. This plot shows the debris objects large enough to be tracked from the ground that a hypothetical mission would encounter at various altitudes, and where they came from. - A large proportion of debris objects in orbit today are leftover from just a couple “fragmentation events”, namely the infamous collision between satellites cosmos-2251 and Iridium 33 in 2009 which created a huge cloud of debris, as well as various rocket related debris and the intentional explosion of Fengyun 1C in 2007. At lower altitudes, our fictional satellite will frequently encounter smaller satellites and constellations which need to be coordinated. - One vital solution is to ensure functional satellites are able to avoid collision with the debris that crosses their path. The process of ‘swerving’ a satellite out of the way of debris is time consuming but vital, and ESA is working on an automated system that will ensure collision avoidance remains practical as the number of satellites in orbit continues to rapidly increase (image credit: ESA)

• March 24, 2021: Debris in orbit varies from millions of millimeter-sized particles to thousands of much larger objects like defunct satellites and rocket parts. As such the damage debris can cause varies from a gradual degradation of satellite parts over time to immediate and total destruction. 12)

- The NASA/ESA Hubble Space Telescope has experienced decades of constant, minor bombardment from small debris objects, but collisions between entire satellites have also taken place, creating thousands of debris fragments.

- Debris objects travel at about 10 km/s, meaning a collision with just 1cm fragment can create the same amount of energy as a small car crashing at 40 km/h!

- Find out more about the damage done by debris in the joint ESA-UN podcast that narrates this infographic.

Figure 18: The impact of space debris (ESA, UNOOSA)
Figure 18: The impact of space debris (ESA, UNOOSA)

• March 17, 2021: The millions of fragments of debris in orbit today are the direct result of 'fragmentation events' in the past. Of the 550 events known to date, those caused by propulsion have created the greatest amount of space debris. 13)

- Energy left undisposed of on-board a satellite or rocket body can lead to explosions. For this reason, the international space debris mitigation guidelines require that satellites are 'passivated' at the end of their mission - for example by emptying fuel tanks and disconnecting batteries.

- Because of these guidelines, and passivation technologies being developed by ESA and others, we expect a similar graph for the future to have far fewer propellant-fueled explosions in the future. However, as traffic in space rapidly increases, the number of collisions is expected to rise.

- Find out how we know about the causes of debris-creating events, and how this can help us prevent them in the joint ESA-UN podcast that narrates this infographic.

Figure 19: The history of space debris creation (image credit: ESA, UNOOSA)
Figure 19: The history of space debris creation (image credit: ESA, UNOOSA)

• March 3, 2021: Since the beginning of the space age, with the launch of Sputnik in 1958, we have launched thousands of rockets carrying more than ten thousand satellites into space. 14)

Figure 20: Since the beginning of the space age, with the launch of Sputnik in 1958, we have launched thousands of rockets carrying more than ten thousand satellites into space (image credit: ESA, UNOOSA)
Figure 20: Since the beginning of the space age, with the launch of Sputnik in 1958, we have launched thousands of rockets carrying more than ten thousand satellites into space (image credit: ESA, UNOOSA)

- The last few years have seen a dramatic increase in these numbers, and over the last few decades there has been a change in the type of mission flown, with private companies (yellow) launching smaller satellites than those launched by non-commercial agencies (blue).

- This graph, created in a joint project between ESA and the UN, also shows the number of unregistered objects (red) has increased in recent years. It should be noted that these are objects not yet registered with the UN, and registration rates are expected to increase.

- In episode 4 of the ESA-UNOOSA space debris series, Ian Freeman and Francesca Letizia discuss what these changes mean for the future of spaceflight and the creation of space debris.

• February 17, 2021: Our planet's atmosphere gradually slows down satellites in orbit and brings them back down to Earth. This process can be relatively fast for satellites flying at low altitudes, taking less than 25 years, but for satellites launched into orbits tens of thousands of kilometers away, it can be thousands of years before they return, if the atmosphere is able to impact them at all. 15)

- Had the dinosaurs launched a satellite into the furthest geostationary orbit, it would still be up there today.

- This means that as we launch satellites to space we must consider how they will be removed at the end of their lives, or else the skies will be filled with old, defunct spacecraft at risk of collision, explosion, and the near-certain creation of vast amounts of space debris.

- As shown in Figure 21, abandoned satellites are dragged down to Earth by the planet's atmosphere, which can take thousands of years depending on their orbital altitude. Had Romans launched a satellite to 1200 km, it would only come back down today. To ensure space isn't full of slowly returning satellites, operators should move them to safety at the end of their lives, either up to the graveyard zone or down to burn up in the atmosphere, according to international guidelines.

Figure 21: In this infographic from ESA and UNOOSA, find out how long it would take satellites at different altitudes to naturally fall back to Earth, and what must be done responsibly dispose of them at the end of their lives (image credit: ESA / UNOOSA)
Figure 21: In this infographic from ESA and UNOOSA, find out how long it would take satellites at different altitudes to naturally fall back to Earth, and what must be done responsibly dispose of them at the end of their lives (image credit: ESA / UNOOSA)

• February 10, 2021: Space debris is an issue of global concern that threatens our continued use of near-Earth space for the benefit of humankind. To raise awareness about this growing problem, ESA and the United Nations Office for Outer Space Affairs (UNOOSA) have created a series of nine infographics and podcast episodes that tell the story of space debris, explain the risks and illustrate the solutions available to ensure future space exploration remains sustainable. 16)

A Limited Natural Resource

- Space may seem vast, but the orbits around Earth in which satellites reside are a limited natural resource. Accidental collisions, explosions and even the intentional destruction of satellites have created millions of debris fragments, which, orbiting at high speed, can damage or destroy any functioning spacecraft that crosses their path.

- As satellite technology becomes ever more relied upon, it gets increasingly important to protect these unique orbital regions that are essential for humanity to, for example, gather data for weather forecasting and to better understand extreme weather and our changing climate, as well as for internet access, communication and location services.

Figure 22: The first infographic in the ESA-UNOOSA series looks into the scale of the space debris problem. - Satellites in orbit share near-Earth space with millions of fast-moving and dangerous debris objects. From tiny fragments millimeters in size to entire satellites no longer working, no longer controlled, roaming the space highways, each debris piece travels many kilometers per second. Any impact with one of these objects threatens to at least impair the functioning of a working spacecraft, or at worst destroy it altogether, creating ever more debris. In this infographic from ESA and the UNOOSA, find out about the scale of the debris problem: how much of it is up there, what scales are we talking about, and what are our satellites are up against?(image credit: ESA / UNOOSA)
Figure 22: The first infographic in the ESA-UNOOSA series looks into the scale of the space debris problem. - Satellites in orbit share near-Earth space with millions of fast-moving and dangerous debris objects. From tiny fragments millimeters in size to entire satellites no longer working, no longer controlled, roaming the space highways, each debris piece travels many kilometers per second. Any impact with one of these objects threatens to at least impair the functioning of a working spacecraft, or at worst destroy it altogether, creating ever more debris. In this infographic from ESA and the UNOOSA, find out about the scale of the debris problem: how much of it is up there, what scales are we talking about, and what are our satellites are up against?(image credit: ESA / UNOOSA)

A Concern to all Nations

- Unfortunately, the amount of space debris in orbit is increasing at an exponential rate. As a growing number of countries and actors begin space activities – a hugely positive development in general – and as satellite operations become more complex and the number of objects being launched, including in large constellations, rapidly increases, so too do the challenges posed to our space environment.

- In 2019, ESA’s Space Safety program was adopted as a key pillar in the Agency’s activities. The program, an expansion of the former Space Situational Awareness programme, includes ESA’s Space Debris and Clean Space Offices, which are working to better understand the debris environment, prevent the creation of more debris, reduce the amount in orbit and lessen the impact of space activities on Earth.

- In 2018, the United Nations General Assembly expressed its worry about the fragility of the space environment and the impact of space debris, which is an issue of concern to all nations. In 2019, the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS), of which UNOOSA is Secretariat, adopted the Guidelines for the Long-Term Sustainability of Outer Space Activities (LTS Guidelines), which provide guidance to help ensure the safe and sustainable use of space. The LTS Guidelines were subsequently welcomed with appreciation by the United Nations General Assembly, and a new working group will continue multilateral discussions on the topic.

Raising Awareness

- This new series of infographics jointly produced by ESA and UNOOSA include attractive, easy to understand illustrations, facts and figures so that everyone, with or without any previous knowledge of spaceflight, can understand space debris and the challenge it poses. They cover topics such as how debris is created, how to avoid collisions, the risk to humans in space from debris and on Earth from re-entries, as well as technologies for safe debris mitigation and removal.

- Each of the nine infographics is accompanied by a podcast with audio commentary from ESA and UNOOSA experts, who help navigate and understand the material. Infographics and podcasts will be released here, once a week, over a period of nine weeks, starting on 10 February 2021, as well as via @UNOOSA and @ESA social media accounts.

- "A new era of space has begun, in which large constellations of thousands of satellites are being launched to the skies," said ESA Director Jan Wörner.

- "What this ‘New Space’ makes possible – global internet access, telecommunications – it also threatens, as a rapid increase in space traffic may dramatically increase the chance of collisions. Innovative technologies, responsible behavior and importantly international cooperation are fundamental to ensuring our future in space is sustainable."

- UNOOSA Director Simonetta Di Pippo said: "Space has its limits. Space debris poses a clear risk for the long-term sustainability of outer space activities. UNOOSA welcomes working with our partners at ESA to disseminate clear, accessible public information on space debris that will increase awareness of the challenges they pose and contribute to strengthening international cooperation on mitigation measures."

• October 12, 2020: Swirling fragments of past space endeavors are trapped in orbit around Earth, threatening our future in space. Over time, the number, mass and area of these debris objects grows steadily, boosting the risk to functioning satellites. 17)

ESA’s Space Debris Office constantly monitors this ever-evolving debris situation, and every year publishes a report on the current state of the debris environment.

Figure 23: Debris and defunct launcher stages in the Geostationary ring. Aging satellites are known to release debris and explosions can occur due to residual energy sources. The resulting fragments can be thrown back and cross the Geostationary orbit. For this reason it's fundamental to release residual energy once the nominal mission is completed (image credit: ESA/ID&Sense/ONiRiXEL , CC BY-SA 3.0 IGO)
Figure 23: Debris and defunct launcher stages in the Geostationary ring. Aging satellites are known to release debris and explosions can occur due to residual energy sources. The resulting fragments can be thrown back and cross the Geostationary orbit. For this reason it's fundamental to release residual energy once the nominal mission is completed (image credit: ESA/ID&Sense/ONiRiXEL , CC BY-SA 3.0 IGO)

Since the beginning of the space age in 1957, tons of rockets, spacecraft and instruments have been launched to space. Initially, there was no plan for what to do with them at the end of their lives. Since then, numbers have continued to increase and explosions and collisions in space have created hundreds of thousands of shards of dangerous debris.

“The biggest contributor to the current space debris problem is explosions in orbit, caused by left-over energy – fuel and batteries – onboard spacecraft and rockets. Despite measures being in place for years to prevent this, we see no decline in the number of such events. Trends towards end-of-mission disposal are improving, but at a slow pace,” explains Holger Krag, Head of the Space Safety Program.

“In view of the constant increase in space-traffic, we need to develop and provide technologies to make debris prevention measures fail-safe, and ESA is doing just that through its Space Safety Program. In parallel, regulators need to monitor the status of space systems as well as global adherence to debris mitigation under their jurisdiction more closely”.

Figure 24: Despite progress in technology, and in understanding the space environment, the need for significantly increasing the pace in applying proposed measures to reduce debris creation has been identified at Europe’s largest-ever space debris conference (more via International Consensus on Debris Threat).
Figure 24: Despite progress in technology, and in understanding the space environment, the need for significantly increasing the pace in applying proposed measures to reduce debris creation has been identified at Europe’s largest-ever space debris conference (more via International Consensus on Debris Threat).

International guidelines and standards now exist making it clear how we can reach a sustainable used of space:

- design rockets and spacecraft to minimize the amount of ‘shedding’ – material becoming detached during launch and operation, due to the harsh conditions of space

- prevent explosions by releasing stored energy, ‘passivating’ spacecraft once at the end of their lives

- Move defunct missions out the way of working satellites – either by de-orbiting them or moving them to a ‘graveyard orbit’

- Prevent in-space crashes through careful choice of orbits and by performing ‘collision avoidance maneuvers’.

Many space agencies, private companies and other space actors are changing their behavior to adhere to these guidelines – but is this enough?

We’re making more and more debris. The number of debris objects, their combined mass, and the total area they take up has been steadily increasing since the beginning of the space age. This is further fuelled by a large number of in-orbit break-ups of spacecraft and rocket stages.

The total area that space debris takes up is important as it is directly related to how many collisions we expect in the future. As things stand, collisions between debris and working satellites is predicted to overtake explosions as the dominant source of debris.

Figure 25: The objects we sent to orbit take up space, as does the debris they create. The increasing area of objects in space dramatically increases the likelihood of collisions. Red (PL)=Payload; Orange (RB)=Rocket Body; Dark Green (RM)=Rocket mission related object (image credit: ESA)
Figure 25: The objects we sent to orbit take up space, as does the debris they create. The increasing area of objects in space dramatically increases the likelihood of collisions. Red (PL)=Payload; Orange (RB)=Rocket Body; Dark Green (RM)=Rocket mission related object (image credit: ESA)

Debris-creating events have become more common. On average over the last two decades, 12 accidental ‘fragmentations’ have occurred in space every year – and this trend is unfortunately increasing. Fragmentation events describe moments in which debris is created due to collisions, explosions, electrical problems and even just the detachment of objects due to the harsh conditions in space.

Figure 26: There are many ways debris can be created in space. For each “fragmentation event” thousands of pieces of dangerous debris can be added to Earth’s orbit (image credit: ESA)
Figure 26: There are many ways debris can be created in space. For each “fragmentation event” thousands of pieces of dangerous debris can be added to Earth’s orbit (image credit: ESA)

On the Bright Side

Attempts are being made to follow the rules (not yet enough). While not all satellites currently comply with international guidelines, more and more space actors are attempting to stick to the rules. In the last decade, 15-30% of objects, or ‘payloads’ launched into non-compliant orbits in the low-Earth orbit region (excluding spacecraft related to human spaceflight) had attempted to comply with debris mitigation measures. Between 5% and 20% did so successfully, peaking at 35% in 2018 due to the active de-orbiting from the Iridium constellation.

More rockets are being safely disposed of. When it comes to rockets, more and more are being sustainably disposed of. Between 40 and 80% of those in a non-compliant low-Earth orbit this decade attempted to comply with debris mitigation measures. Of these, 30-70% did so successfully.

Of all the rockets launched in the last decade, 60-80% (in terms of mass) adhered to mitigation measures. Some rockets are in low-Earth orbits that lead them to decay naturally in Earth’s atmosphere, but a significant amount of rockets are directed back into Earth’s atmosphere where they either burn up or are made to re-enter over uninhabited areas. Such practises are increasing, with about 30% of rockets safely re-entering in a controlled manner since 2017.

This is very good news. Rocket bodies are among the largest objects we send to space and are at a high risk of being involved in catastrophic collisions. All steps to ensure they do not linger in orbit after a maximum of 24 hours from launch is to be celebrated.

Figure 27: More satellites, or ”payloads”, sent to LEO are attempting to sustainably comply with debris mitigation measures than 20 years ago. However, progress is still too slow (image credit: ESA)
Figure 27: More satellites, or ”payloads”, sent to LEO are attempting to sustainably comply with debris mitigation measures than 20 years ago. However, progress is still too slow (image credit: ESA)
Figure 28: 80% of the rockets launched now attempt to 'clear' LEO- the vast majority of which do so successfully - up from just over 20% at the beginning of the millennium (image credit: ESA)
Figure 28: 80% of the rockets launched now attempt to 'clear' LEO- the vast majority of which do so successfully - up from just over 20% at the beginning of the millennium (image credit: ESA)

More satellites put in low-altitude orbits where they naturally burn up. The amount of ‘traffic’ launched into the low-Earth orbit (LEO) protected region – up to 2000 km in altitude – is changing significantly, in particular due to the proliferation of small satellites and constellations.

Figure 29: The number of small satellites launched into near-Earth orbit has dramatically increased in the last 10 years, in part due to the rise of satellite constellations (image credit: ESA)
Figure 29: The number of small satellites launched into near-Earth orbit has dramatically increased in the last 10 years, in part due to the rise of satellite constellations (image credit: ESA)

Around 88% of small payloads launched into this region will naturally adhere to space debris mitigation measures due to their low altitude, meaning they break up in Earth’s atmosphere.

Between 30-60% of all satellite mass (excluding from human spaceflight) is estimated to adhere to end-of-life guidelines for the same reason.

“The accelerating increase of satellites launched into low-Earth orbit is starkly visible in our latest report,” explains Tim Florer, Head of ESA’s Space Debris Office.

“We have observed fundamental changes in the way we are using space. To continue benefiting from the science, technology and data that operating in space brings, it is vital that we achieve better compliance with existing space debris mitigation guidelines in spacecraft design and operations. It cannot be stressed enough – this is essential for the sustainable use of space.”

High rates of debris mitigation in geostationary orbit. Satellites launched into the geostationary protected region, 35 586 - 35 986 km in altitude, have very high rates of adherence to debris mitigation measures. Between 85% and 100% that reached the end of their life this decade attempted to comply with these measures, of which 60 - 90% did so successfully.

In geostationary orbit, there is a clear commercial interest for operators to keep their paths free from defunct satellites and debris – to not do so would put their spacecraft, and bottom line, at serious risk.

Figure 30: Several times in recent years, all satellites in geostationary orbit attempted to responsibly move out of the way once they reached the end of their mission (image credit: ESA)
Figure 30: Several times in recent years, all satellites in geostationary orbit attempted to responsibly move out of the way once they reached the end of their mission (image credit: ESA)

What Now?

Systematic analysis of changing behaviors in space, when it comes to the adoption of debris mitigation measures, provides reasons to be cautiously optimistic – this was not the case a decade ago.

If adopted quickly, sustained investment in new technologies to passivate and dispose of missions will allow our environment to cope with the continued increase in space traffic and ever-more complex operations.

Figure 31: Distribution of space debris around Earth (image credit: ESA)
Figure 31: Distribution of space debris around Earth (image credit: ESA)

For debris objects bigger than 10 cm the data comes from the US Space Surveillance Catalogue.

The information about debris objects smaller than 10 cm is based on a statistical model from ESA.

Number of space debris objects in orbit:

- > 1m: 5,400 objects

- > 10 cm: 34,000 objects (among them are only 2,000 active satellites)

- 1cm: 900,000 objects

- > 1mm: 130,000 000 objects

We must think of the space environment as a shared and limited natural resource. Continued creation of space debris will lead to the Kessler syndrome, when the density of objects in low Earth orbit is high enough that collisions between objects and debris create a cascade effect, each crash generating debris that then increases the likelihood of further collisions. At this point, certain orbits around Earth will become entirely inhospitable.

ESA is actively working to support the guidelines for the long-term sustainability of outer space activities from the UN Committee on the Peaceful Uses of Outer Space, including funding the world’s first mission to remove a piece of debris from orbit, helping to create an international space sustainability rating and developing technologies to automate collision avoidance and reduce the impact on our environment from space missions.

Find out more about ESA’s Space Debris and Clean Space Offices, both part of the Space Safety Program, and the Agency’s upcoming conference on space debris - the world’s largest on the topic - taking place in April 2021.


• There have only been human-made objects in space since the start of the Space Age in 1957, and all resulted from the 5253 launches (as of January 2017) since then. The majority (about 58%) of the catalogued objects, however, originate from more than 290 break-ups in orbit, mainly caused by explosions, and from about 10 suspected collisions (of which four are confirmed between catalogued objects). 18)

Major contributions to the population of fragments came from a Chinese anti-satellite test targeting the Feng Yun-1C weather satellite on 11 January 2007, which created more than 3400 tracked fragments, and the approximately 2300 tracked fragments created from the first-ever accidental collision between two satellites, Iridium-33 and Cosmos-2251, on 10 February 2009.

About 24% of the catalogued objects are satellites (less than a third of which are operational), and about 18% are spent rocket bodies and other mission-related objects. Fragmentation debris dominates the smaller size regimes down to 1 mm. Below 1 mm, slag and dust residues from about 2440 solid-propellant motor firings prevail. Other debris sources can be associated with the release of liquid coolant from 16 Buk nuclear reactors on Russian radar ocean reconnaissance satellites in the 1980s, and with the release of surface materials from old satellites and rocket bodies due to impacts and/or surface degradation.

The main source of information on large space debris is the US SSN (Space Surveillance Network). As of January 2017, SSN is tracking, correlating and cataloguing around 23 000 space objects larger than 5–10 cm in Earth orbit (around 5000 of which are unpublished for various reasons). Debris environment models can be used to estimate total numbers, indicating that there are 29 000 objects larger than 10 cm, 750 000 from 1 to 10 cm, and more than 166 million from 1 mm to 1 cm.

Figure 32: Evolution of the tracked and published space object population and its composition by object class -status January 2017 (image credit: ESA)
Figure 32: Evolution of the tracked and published space object population and its composition by object class -status January 2017 (image credit: ESA)
Figure 33: Modelled space debris population for objects >1 m (a), > 10 cm (b), >1 cm (c), and >1 mm (d). The sizes of debris are exaggerated in relation to Earth. Figure 32 statistics translated into Figure 33. Red: intact satellites (inactive or active), yellow: upper stages, green: mission-related objects, blue: fragments (ESA MASTER model)
Figure 33: Modelled space debris population for objects >1 m (a), > 10 cm (b), >1 cm (c), and >1 mm (d). The sizes of debris are exaggerated in relation to Earth. Figure 32 statistics translated into Figure 33. Red: intact satellites (inactive or active), yellow: upper stages, green: mission-related objects, blue: fragments (ESA MASTER model)
Figure 34: This chart displays a summary of all objects in Earth orbit officially cataloged by the U.S. SSN (Space Surveillance Network). ”Fragmentation debris” includes satellite breakup debris and anomalous event debris, while ”mission-related debris” includes all objects dispensed, separated, or released as part of the planned mission (image credit: U.S. SSN) 19)
Figure 34: This chart displays a summary of all objects in Earth orbit officially cataloged by the U.S. SSN (Space Surveillance Network). ”Fragmentation debris” includes satellite breakup debris and anomalous event debris, while ”mission-related debris” includes all objects dispensed, separated, or released as part of the planned mission (image credit: U.S. SSN) 19)

Debris is generated during normal operations by the injection of stages into orbit, the release of mission-related objects and the eventual retirement of a satellite. Subsequent break-ups and other release events may occur and contribute further debris. These combined debris sources are counteracted by natural cleaning mechanisms, such as perturbations to the orbital motion due to the Sun and Moon, and forces induced by air drag. LEO satellites are continuously exposed to aerodynamic forces from the rarefied upper reaches of the atmosphere. Depending on the altitude, after a few weeks, years or even centuries, this drag will decelerate the satellite sufficiently that it reenters Earth’s atmosphere. At higher altitudes, above 700–800 km, the air drag is less and objects generally remain in orbit for at least several decades.

The result of the balancing effects of debris creation and orbital decay leads to maximum debris concentrations at altitudes of 800–1000 km and near to 1400 km. Secondary peaks of spatial densities in GEO (Geostationary Orbit), at 35 786 km altitude and near the orbits of navigation satellite constellations between 19 000 and 23 000 km altitude in MEO (Medium Earth Orbit) are smaller by two to three orders of magnitude.

 

Recognizing Sustainable Behavior

• April 22, 2021: Our planet is surrounded by spacecraft helping us study our changing climate, save lives following disasters, deliver global communication and navigation services and help us answer important scientific questions. 20)

- But these satellites are at risk. Accidental collisions between objects in space can produce huge clouds of fast-moving debris that can spread and damage additional satellites with cascading effect.

Figure 35: In this animation, find out how teams at ESA’s European Space Operations Centre in Darmstadt, Germany, take action to keep satellites safe after receiving an alert warning of a possible collision between an active satellite and a piece of space debris (video credit: ESA)

- When the alert is raised, ESA experts determine the risk of a collision and plan a collision avoidance maneuver that can be used to get the satellite out of harm’s way if necessary.

- Additional observations of the piece of space debris help the team better understand its path and the risk of collision. If that risk remains too high (typically 1 in 10 000), the planned maneuver is carried out to temporarily change the orbit of the satellite until the threat has passed.

- Each maneuver comes at a price. They take skill and time to plan, cost precious fuel – shortening the lifetime of the mission – and often require instruments to be temporarily shut off, preventing them from collecting important data.

- While most alerts do not end up requiring evasive action, the number of alerts is rapidly increasing. Hundreds are already issued every week. Several companies have begun to launch large constellations into low-Earth orbit to provide global internet access. They have great benefits, but could be a source of huge disruption if we do not change our behavior.

- In just a few years, our current methods for avoiding collisions in space will no longer be enough. To safeguard humankind’s continued access to space for future generations, ESA is developing technologies for an automated collision avoidance system.

• May 6, 2019: Solving the growing problem of space debris will require everyone who flies rockets and satellites to adhere to sustainable practices, which doesn’t always happen. Now there will be a way to recognize those who do. 21)

Figure 36: Distribution of space debris in orbit around Earth. This animation shows different types of space debris objects and different debris sizes in orbit around Earth. For debris objects bigger than 10 cm the data come from the US Space Surveillance Catalogue The information about debris objects smaller than 10 cm is based on a statistical model by ESA (video credit: ESA)

Number of space debris objects in orbit:
> 1m: 5,400 objects
> 10 cm: 34,000 objects (among them are only 2 000 active satellites)
> 1cm: 900,000 objects
> 1mm: 130,000 000 objects

Color code:
Red: satellites (functional or dysfunctional)
Yellow: rocket bodies
Green: mission related objects (covers, caps, adapters, etc.)
Blue: fragments

We increasingly rely on satellites for every-day activities like navigation, weather forecasting and telecommunications, and any loss of these space-based services could have a serious effect on our modern economies.

Yet vital orbital pathways around Earth are becoming more congested with trash, such as abandoned satellites and rocket upper stages or debris fragments from old satellites that have exploded.

“There are numerous debris reduction and mitigation guidelines that can be applied at the design, manufacturing, launching, operating or disposal stage of any mission, but the challenge has been getting the global community to apply these in a consistent way,” says Holger Krag, Head of ESA’s Space Debris Office. “Applying these guidelines generally adds cost or reduces the useful life of a satellite, even if only slightly, so it’s always been a tough sell,” says Holger.

In a bid to address this issue, and to foster global standards in debris mitigation, the World Economic Forum will work with the Massachusetts Institute of Technology Media Lab and ESA to launch a new ‘Space Sustainability Rating’ (SSR), a concept initiated by the Forum’s Global Future Council on Space Technologies.

“The global economy depends on our ability to operate satellites safely in order to fly in planes, prepare for severe weather, broadcast television and study our changing climate,” says Danielle Wood, founder and director MIT Media Lab’s Space Enabled research group. “In order to continue using satellites in orbit around Earth for years to come, we need to ensure that the environment around Earth is as free as possible from trash leftover from previous missions.”

International Collaboration

The new rating system will also be supported by Bryce Space and Technology, a firm providing services in strategy, market analytics and policy for the space industry with offices in the US and UK, and a team from the University of Texas at Austin, USA with expertise in orbital dynamics and space law.

Similar to rating systems such as the LEED certification used by the construction industry, the Space Sustainability Rating aims to ensure long-term sustainability by encouraging and rewarding responsible behavior amongst all space actors, including designers, manufacturers, launch providers, spacecraft operators and even government agencies.

“Together with our collaborators, we aim to put in place a system that has the flexibility to stimulate and drive innovative sustainable design solutions,” says Stijn Lemmens, a senior space debris mitigation analyst at ESA. “We also aim to put in the spotlight those missions that contribute positively to the space environment.”

Today, there are more than 22,000 debris objects regularly tracked in orbit using radars and other methods, and any one of these could damage or destroy a functioning satellite if a collision were to occur.

In 2018, ESA-operated satellites had to conduct 27 debris avoidance maneuvers, a number that is growing year by year.

Later this year, ESA Member States will consider a range of new proposals related to space debris at the Space19+ council meeting. These include developing and demonstrating an automated collision avoidance system, an urgent need in view of the enormous constellations of small satellites that will be deployed by commercial companies in the next few years, and developing a European industrial capacity to conduct in-orbit servicing by flying a first-of-its-kind debris-removal mission.

The new SSR initiative is to be announced today at the Satellite 2019 conference in Washington, D.C., an international forum for companies, academia and agencies working in space.

ESA’s 2019 Space Debris Environment report is available here.

 

Chance to Test Debris Formation

April 12, 2019: The discarded ‘upper stage’ from a rocket launched almost ten years ago has recently crumbled to pieces. “Leaving a trail of debris in its wake, this fragmentation event provides space debris experts with a rare opportunity to test their understanding of such hugely important processes”, explains Tim Flohrer, ESA's Senior Space Debris Monitoring Expert. 22)

Fragmentation events like this one – either break ups or collisions – are the primary source of debris objects in space in the range of a few millimeters to tens of centimeters in size. Travelling at vast speeds, these bits of technological trash pose a threat to crucial space infrastructure, such as satellites providing weather and navigation services, and even astronauts on the ISS.

A remarkable video captured by the Deimos Sky Survey in Spain shows the stream of newly-made debris objects as they rush across the sky. Deimos Sky Survey tracked the fragmentation and debris formation of the ATLAS V Rocket. The analyses show the expected evolution of the fragments cloud around the Earth and the Spatial density at different altitudes and timeframes. 23)

On March 26th 2019 at the occasion of the IAF Spring meeting Space Debris Committee, Vladimir Agapov of Keldysh Institute of Applied Mathematics (Russia) unveiled the fragmentation event of object 2009-047B, estimated to have taken place on 25 March 2019. The 2009-047B object is the second stage of the Atlas V launcher which put in orbit a US satellite on 8th September 2009. The rocket body was placed on a GEO Transfer Orbit of 6,673 x 34,700 km, 23.1º, where it could stay for centuries.

Following the announcement, Deimos Sky Survey observatory has tracked the object in the nights of 26th, 27th and 28th of March, providing detailed images of the central body and between 40 and 60 fragments larger than 30 cm size. Animations (typically covering 30 seconds of real data) based on acquisitions on these days show the objects as fixed points, while stars are shown as trails, since the sensor is moving following the objects’ movement.

Figure 37: Rocket body fragments from the object 2009-047B. In the clip, a number of small point-like fragments can be seen spread horizontally across the frame. As the observatory moves with the debris objects, the background stars are seen as white streaks. The remnant piece is clearly visible as the largest and brightest point at the center of about 40-60 smaller pieces, many larger than 30 cm in size, and has been traced back to the upper stage of a rocket launched in September 2009 (image credit: Deimos Sky Survey)
Figure 37: Rocket body fragments from the object 2009-047B. In the clip, a number of small point-like fragments can be seen spread horizontally across the frame. As the observatory moves with the debris objects, the background stars are seen as white streaks. The remnant piece is clearly visible as the largest and brightest point at the center of about 40-60 smaller pieces, many larger than 30 cm in size, and has been traced back to the upper stage of a rocket launched in September 2009 (image credit: Deimos Sky Survey)

For an as-yet-unknown reason, the rocket body fragmented some time between 23 to 25 March 2019.

Figure 38: On the fixed image of March 27th, individual objects are detected for tagging and identification. Based on the acquired images and simulated data from breakup models, Elecnor Deimos SSA team is making use of the in-house processing, and fragmentation evaluation tools, to carry out analysis and perform simulations so as to characterize the resulting objects and predict is orbital evolution. Results of these analyses, such as the expected evolution of the fragments cloud around the Earth or the Spatial density at different altitudes and timeframe, shown below, are being shared with the Space Surveillance and Tracking international community. (image credit: Deimos Sky Survey)
Figure 38: On the fixed image of March 27th, individual objects are detected for tagging and identification. Based on the acquired images and simulated data from breakup models, Elecnor Deimos SSA team is making use of the in-house processing, and fragmentation evaluation tools, to carry out analysis and perform simulations so as to characterize the resulting objects and predict is orbital evolution. Results of these analyses, such as the expected evolution of the fragments cloud around the Earth or the Spatial density at different altitudes and timeframe, shown below, are being shared with the Space Surveillance and Tracking international community. (image credit: Deimos Sky Survey)
Figure 39: Sample image of the Atlas V Centaur upper stage. A Centaur upper stage is lifted onto the first stage booster of a United Launch Alliance Atlas V (image credit: NASA / Roy Allison)
Figure 39: Sample image of the Atlas V Centaur upper stage. A Centaur upper stage is lifted onto the first stage booster of a United Launch Alliance Atlas V (image credit: NASA / Roy Allison)

An International Effort

During a meeting of the International Academy of Astronautics (IAA) on 26 March 2019, ESA’s space debris team met their counterparts from Russia, who informed the international community of fragments detected orbiting in the sky.

Just hours later, the Zimmerwald Observatory in Switzerland scheduled immediate observations of the cloud of fragments, and by 26 March had acquired the first views.

Figure 40: The first series of exposures of a fragmentation event in March 2019, taken by the 0.8 meter telescope ZimMAIN, which followed the debris cloud. The animation reveals several small dots, each a fragment larger than a few tens of centimeters, with background stars appearing as long streaks (image credit: Zimmerwald Observatory, AIUB)
Figure 40: The first series of exposures of a fragmentation event in March 2019, taken by the 0.8 meter telescope ZimMAIN, which followed the debris cloud. The animation reveals several small dots, each a fragment larger than a few tens of centimeters, with background stars appearing as long streaks (image credit: Zimmerwald Observatory, AIUB)

Not long after, the Deimos Sky Survey followed up with observations of the event from 26-28 March (Figures 37 and 38), using the ‘Antsy’ optical sensor in Spain, which is adapted for tracking objects in low-Earth orbit. While Zimmerwald continues to observe the cloud in close collaboration with Russian and ESA experts, ESA’s own 1meter telescope at the Optical Ground Station at Tenerife, Spain, has joined the observation campaign, detecting a large number of fragments down to 10-20 cm in size.

Modelling the Mess

ESA keeps an eye on events like this and continually updates the international community through its public database, enabling researchers to find patterns and come up with mitigation strategies for spacecraft in all variety of shapes, sizes and orbits. The database also allows operators of satellites and spacecraft to determine the changing risk to their missions from specific fragmentation events.

Once detected and observed, events like these are put into ‘space debris environment models’, allowing teams to compare the fragmentation of real-life debris with predictions – a rare but crucial opportunity to validate or improve models as necessary.

Figure 41: Tough Love. This Valentine’s Day, look to the skies at night and you’ll see stars twinkling, a glistening Moon and perhaps even an orbiting science lab passing by, the ISS. What you can’t see is the thousands of bits of space debris that circle our planet – remnants of past scientific and technical endeavors, evidence of five decades spent in space. ESA’s Space Debris Office constantly monitors more than 20,000 debris objects in orbit, issuing warnings and guidance to the operators of ESA spacecraft. (image credit: ESA, CC BY-SA 3.0 IGO)
Figure 41: Tough Love. This Valentine’s Day, look to the skies at night and you’ll see stars twinkling, a glistening Moon and perhaps even an orbiting science lab passing by, the ISS. What you can’t see is the thousands of bits of space debris that circle our planet – remnants of past scientific and technical endeavors, evidence of five decades spent in space. ESA’s Space Debris Office constantly monitors more than 20,000 debris objects in orbit, issuing warnings and guidance to the operators of ESA spacecraft. (image credit: ESA, CC BY-SA 3.0 IGO)

Developing models of the space debris environment allows ESA to design spacecraft that can withstand impacts from small objects, and design systems to avoid collisions. These models are the baseline for predicting not just the present, but our future space debris environment, which is essential to developing efficient space debris mitigation guidelines.

International collaboration is essential to exchanging data and models, which takes place via a technical body called the Inter-Agency Space Debris Coordination Committee, which comprises all major European and international space agencies.

“As this example shows, international collaboration is essential if we want to respond quickly to debris creating events”, concludes Holger Krag, Head of ESA's Space Safety Office. “Incidents like this are rare, so to have such rich observations and data from across the globe is a unique opportunity to better understand the human-made environment around Earth, in which our satellites live out their lives”.

Figure 42: Space Safety & Security at ESA. As we discover more about the brilliant scale and nature of the Universe, planet Earth’s blue oceans, green forests and glistening city lights appear even more unique, and even more fragile. Many hazards have been identified originating in space, which although unlikely, continue to pose real dangers to our way of life, and in the worst cases to human health and safety. Only in the past decades have we had the opportunity to understand the potential perils of our position in our Solar System, and as technologies continue to advance we are entering a period in which we can actually act. However, as technologies advance, so too does our dependence on them, making us more vulnerable to both human-made and natural threats in space (image credit: ESA)
Figure 42: Space Safety & Security at ESA. As we discover more about the brilliant scale and nature of the Universe, planet Earth’s blue oceans, green forests and glistening city lights appear even more unique, and even more fragile. Many hazards have been identified originating in space, which although unlikely, continue to pose real dangers to our way of life, and in the worst cases to human health and safety. Only in the past decades have we had the opportunity to understand the potential perils of our position in our Solar System, and as technologies continue to advance we are entering a period in which we can actually act. However, as technologies advance, so too does our dependence on them, making us more vulnerable to both human-made and natural threats in space (image credit: ESA)

 


 

 

Space Debris Measurements

Existing space object catalogs are typically limited to objects larger than 5–10 cm at low altitudes (LEO) and larger than 0.3–1 m at high altitudes (GEO). In a compromise between system cost and performance, passive optical telescopes are suited mainly to observing high altitudes, whereas radars are advantageous below 2000 km.

Satellite laser-ranging to debris objects is an emerging technology. Several experiments have provided promising results for the detection and follow-up of intact objects and of fragments not carrying laser retro-reflectors, as well as for the determination of their attitude and the attitude motion.

Knowledge of the meteoroid and debris environment at subcatalog sizes is normally acquired in a statistical manner through experimental sensors with higher sensitivities. ESA collaborates primarily with the Fraunhofer Institute for High Frequency Physics and Radar Techniques, near Bonn, Germany, which operates the TIRA (Tracking and Imaging Radar) system. Apart from dedicated tracking campaigns, TIRA also regularly conducts surveys that detect debris and determine coarse orbit information for objects of diameters down to 2 cm at 1000 km distance.

ESA also gains information on the submillimeter meteoroid and debris environment through analyzing retrieved space hardware, and through active in situ impact detectors by analyzing impact fluxes (the number of impacts per surface area and time).

The knowledge of space debris in the millimeter to centimeter range is poor by comparison, and space debris environment models do not agree well for this class. Such objects are too small for ground-based sensors and rarely impact the sensitive face of the in situ impact detectors. Novel approaches for statistical characterization, such as through in situ detectors providing a large collecting area or with space-based optical sensors, are being studied.

 

Space Debris Modeling

ESA maintains a number of software models for characterizing the debris environment and its evolution. 24) The Agency’s preeminent debris and meteoroid risk assessment tool is MASTER (Meteoroid and Space Debris Terrestrial Environment Reference). It was first issued in 1995 and has been continuously improved since then. Impact flux information is provided with high spatial resolution for an object population that is derived from all known historical debris generation events, including the estimation of flux uncertainties.

At the Teide Observatory on Tenerife in the Canary Islands, Spain, ESA operates the Optical Ground Station – dubbed ESA’s Space Debris Telescope (Figure 43). Its 1 m diameter Zeiss telescope, equipped with highly efficient cameras, is used to survey and characterize objects at high altitudes, often in collaboration with other telescopes, such as those operated by the University of Bern, Switzerland. The ESA telescope can detect and track near-GEO objects up to magnitudes of +19 to +21 (equivalent to down to 15 cm in size). With this performance, the ESA telescope is among the world’s top-ranking sensors.

ESA’s latest data indicate that the number of fragmentation events in GEO is much higher than previously believed. It also appears that objects in GEO tend to release extremely lightweight objects with high area-to-mass ratios, such as pieces of thermal blankets, and with strongly perturbed orbits that require frequent reobservations.

The acquired data on space debris are essential for developing and validating environment models. To validate model predictions and to optimize observation times and sensor sensitivity in the planning of observation campaigns, ESA developed PROOF (Program for Radar and Optical Observation Forecasting).

 

Figure 43: ESA’s 1 m diameter Zeiss space debris telescope at the Optical Ground Station on Tenerife (image credit: ESA)
Figure 43: ESA’s 1 m diameter Zeiss space debris telescope at the Optical Ground Station on Tenerife (image credit: ESA)

 

Mitigation

With today’s rate of 70–90 launches a year, an increasing number of launches injecting 30 or more small satellites into orbit at once, and assuming future break-ups will continue at mean historical rates of four to five per year, the number of objects in space is expected to increase steadily. As a consequence of the rising object count, the probability of catastrophic collisions will also grow in a progressive manner.

Collision fragments can trigger further collisions, leading to a self-sustaining cascading process known as the ‘Kessler syndrome’. This is particularly critical for LEO, and may seriously endanger spaceflight within a few decades in certain orbit altitudes.

Spacefaring nations are focusing their efforts on controlling the debris environment. The ultimate goal is to limit the collisional cascading process in the Earth environment. Initial steps aim at reducing the generation of hazardous debris by avoiding in-orbit explosions or collisions with operational satellites, and by removing satellites from densely populated altitudes at the end of their missions. To this end, the IADC (Inter-Agency Space Debris Coordination Committee), recognized internationally as the technical authority on space debris, released a set of space debris mitigation guidelines in 2002. These guidelines have been used as the model for national legislation and international standardization. ESA is taking a leading role in monitoring adherence to these guidelines, and reports its findings annually to the international community, including the United Nations.

Figure 44: Estimates (by mass) of the adherence of space missions in LEO to post-mission disposal guidelines at end of life (image credit: ESA)
Figure 44: Estimates (by mass) of the adherence of space missions in LEO to post-mission disposal guidelines at end of life (image credit: ESA)

ESA missions that were designed during the previous century can only implement best practices for space debris mitigation. For example, in 2011, ESA implemented dedicated end-of-mission operations for its ERS-2 (European Remote Sensing-2) satellite, which at that time had been operational for over 16 years. During these operations, the remaining orbital lifetime was significantly reduced, to well below 15 years, and all residual fuel was consumed. This effectively reduced the risks of collision and accidental break-up by orders of magnitude. In 2013, ESA’s astronomy satellites Planck and Herschel were injected into orbits around the Sun after their missions were completed, in order to avoid creating a collision threat or reentry hazard. In 2015, two large orbit-change maneuvers were implemented for ESA’s Integral and Cluster-1 satellites. These maneuvers ensured that both satellites will reenter Earth’s atmosphere during the next decade in a safe way, and avoid long-term interference with the protected LEO and GEO regions.

‘Business as usual’ space activities will lead to a progressive, uncontrolled increase in debris objects, with collisions becoming the primary debris source.

Figure 45: Projected evolution of the number of objects larger than 10 cm in LEO, depending on the adherence to PMD (Post Mission Disposal) guidelines (image credit: ESA)
Figure 45: Projected evolution of the number of objects larger than 10 cm in LEO, depending on the adherence to PMD (Post Mission Disposal) guidelines (image credit: ESA)

All new ESA missions now include space debris mitigation as part of the standard mission design. To facilitate analyses by mission planners, spacecraft engineers and space system manufacturers, ESA has developed the DRAMA (Debris Risk Assessment and Mitigation Analysis) software tool. DRAMA allows the estimation of delta-V budgets for collision avoidance, optimization of disposal strategies along with estimation of orbital lifetimes, and analysis of ground casualty expectations. DRAMA is available for use by industry and academia worldwide and is distributed free of charge by ESA.

 

Protection

The consequences of impacts on satellites can range from small surface pits from micrometer-size objects, via clear-hole penetrations from mm-size objects, to mission-critical damage from projectiles larger than a centimeter. The destructive energy is a consequence of the high impact speeds, which can reach more than 15 km/s.

ESA’s space projects use hypervelocity impact tests in association with damage-assessment tools to predict potential risks from hypervelocity impacts of debris and meteoroids, and to define effective protection measures through shielding and design.

Smaller, uncatalogued objects can only be defended against by passive protection techniques, such as those as used by the ISS (International Space Station). The ISS is equipped with debris shields around the inhabited modules, known as ‘stuffed Whipple shields’. These shields are composed of two metal sheets, separated by about 10 cm. Between the walls, fabric with the same purpose as in bulletproof vests is used. This design enables the shield to defeat debris objects of up to 1 cm. At more than 7 km/s, depending on the materials, an impact on the bumper wall will lead to a clear-hole penetration with a complete break-up and melting of the projectile, such that the dispersed fragment cloud can be withstood by the back wall.

Figure 46: The impact of a small projectile on an aluminum cube, showing the (often counter-intuitive) dynamics during such impacts. The time-series shows ejecta upon impact (first image), the projectile exiting (second image), and the shock wave causing rupture of the structure (last two images). This illustrates the huge amount of energy released by small debris objects involved in a hypervelocity collision (image credit: Fraunhofer/EMI)
Figure 46: The impact of a small projectile on an aluminum cube, showing the (often counter-intuitive) dynamics during such impacts. The time-series shows ejecta upon impact (first image), the projectile exiting (second image), and the shock wave causing rupture of the structure (last two images). This illustrates the huge amount of energy released by small debris objects involved in a hypervelocity collision (image credit: Fraunhofer/EMI)

Protection of an unmanned satellite can be improved efficiently by moving sensitive equipment away from the most probable impact direction, and/or by covering sensitive parts with protective fabric layers. Such measures can significantly increase the survival chances of a satellite against debris of up to 1 mm.

Recent research focuses on the vulnerability of membranes used for solar sails and drag augmentation devices. These thin foils need to survive micrometeoroid and debris impacts without losing too much of their effective area.

Furthermore, with the number of in-orbit collisions rising, a better understanding of the structural destruction and fragment generation is required as input to environment modelling. Modern methods of computational physics are applied for this purpose.

Figure 47: Whipple shielding after impact testing. The left image shows the damage to the outside, and the right shows the innermost layer (image credit: ESA-Laagland)
Figure 47: Whipple shielding after impact testing. The left image shows the damage to the outside, and the right shows the innermost layer (image credit: ESA-Laagland)
Figure 48: Close-up of DEBIE-2 sensors on the ISS (image credit: ESA)
Figure 48: Close-up of DEBIE-2 sensors on the ISS (image credit: ESA)

Legend to Figure 48: On 18 February 2008, DEBIE-2 (Debris In-orbit Evaluator-2) was launched to the ISS on Columbus. This in situ impact detector has three 10 x 10 cm sensors looking in different directions, which measure the submillimeter-size populations of meteoroids and space debris particles in space. They are attached as external payloads to the Columbus module.

 

Collision and Reentry Risk Mitigation

The first accidental collision between two intact satellites occurred at 16:56 GMT on 10 February 2009. An operational US commercial communications satellite, Iridium-33, and a retired Russian military satellite, Cosmos-2251, collided at an altitude of 776 km above Siberia at a relative speed of 11.7 km/s. Both spacecraft were destroyed and more than 2300 trackable fragments were generated, some of which have since reentered.

Avoiding collisions is an important mitigation measure but this requires that the orbits of the approaching objects (‘chasers’) are known with sufficient accuracy. Benefiting from a data-sharing agreement with US Strategic Command, ESA uses Conjunction Data Messages provided by the US JSpOC (Joint Space Operations Center) together with ESA’s own orbit data to analyze all close approaches (‘potential conjunctions’) of a given satellite (‘target’) with any of the catalogued objects. The collision risk is determined as a function of the object sizes, the predicted miss distance, the flyby geometry, the orbit uncertainties and the time to conjunction. Today, ESA has a highly automated process in place to process several hundred messages every day, and to screen autonomously planned routine orbital maneuvers. A modern, web-based front-end with visualization capabilities supports communication with the flight control teams, flight dynamics teams, and mission managers.

ESA executes on average 12 collision avoidance maneuvers per year, in cases where the estimated collision risk is above the mission-defined ‘tolerable probability threshold’.

ESA’s Space Debris Office provides conjunction predictions and collision risk estimation as an operational service to ESA and third-party missions.

Figure 49: Locations of debris objects that have been retrieved after reentry (image credit: ESA)
Figure 49: Locations of debris objects that have been retrieved after reentry (image credit: ESA)

Only a few very large objects, such as heavy scientific satellites, reenter Earth’s atmosphere in a year. In total, about 75% of all the larger objects ever launched have already reentered. Objects of moderate size, 1 m or above, reenter about once a week, while on average two small tracked debris objects reenter per day.

In general, reentering objects pose only a marginal risk to people or infrastructure on the ground or to aviation. From an altitude of 110 km, during the last 10 minutes before an object reaches the ground, the atmosphere is dense enough that the object heats up due to air resistance and decelerates, leading in the majority of cases to its demise. In the case of a large or a very compact and dense satellite, and especially when a large amount of high-melting-point material such as stainless steel or titanium is involved, fragments of the object may reach the ground. As these are rare events, and as about 75% of Earth’s surface is covered by water and large portions of the land mass are uninhabited, the risk for any single individual is several orders of magnitude smaller than commonly accepted risks faced in daily life. Even being struck by lightning is 60,000 times more likely. In fact, to date there have been no known injuries resulting from reentering space debris. However, it is important to monitor the risk to the global population.

Skylab (74 tons, July 1979) and Salyut-7/Kosmos-1686 (40 tons, February 1991) are well-known examples of large-scale uncontrolled reentries. In such cases, 20–40% of the spacecraft mass may impact the ground. Examples of recent uncontrolled reentries that generated a lot of public interest were the Russian Phobos–Grunt Mars mission in 2012 and ESA’s GOCE (Gravity field and steady-state Ocean Circulation Explorer) in November 2013.

Figure 50: Amateur image of GOCE reentering the atmosphere over the Falklands on 11 November 2013 (image credit: ESA)
Figure 50: Amateur image of GOCE reentering the atmosphere over the Falklands on 11 November 2013 (image credit: ESA)

To assess the risks associated with reentries, ESA has developed finite-element and simplified models that allow simulation of the break-up of a spacecraft in Earth’s atmosphere. The models take into account the aerothermal, aerodynamic, atmospheric chemistry and thermomechanical effects, and are coupled with population forecast models. ESA’s Space Debris Office provides information on upcoming and past reentries to a wide target audience, including national protection agencies, researchers and the general public, via a web-based portal. 25) ESA participates in and hosts a reentry data exchange platform for the IADC.

 

Regulations and Treaties

Space debris is a problem to which all spacefaring nations have contributed. Likewise, debris poses a risk to the missions of all spacefaring nations.

Since analysts first became aware of an emerging space debris problem in the early 1970s, the understanding of debris sources, the resulting debris environment and the associated risks have improved significantly. Today, the global dimension of the problem is internationally recognized, and space system designers, operators and policymakers share the view that active control of the space debris environment is necessary to sustain safe space activities in the future.

Research results are regularly discussed at the quadrennial series of ESA-organized European Conferences on Space Debris, and at dedicated sessions of the IAC (International Astronautical Congress) and COSPAR (COmmittee on SPAce Research) Scientific Assemblies and other conferences. The IADC (Inter-Agency Space Debris Coordination Committee), the most-recognized international entity on space debris, has produced a set of mitigation guidelines, which also served as input to a set of space debris mitigation guidelines adopted by the UNCOPUOS (UN Committee on the Peaceful Uses of Outer Space). The key recommendations are:

• limit debris release during normal operations

• minimize the potential for break-ups during operational phases

• limit the probability of accidental collisions

• refrain from intentional destruction and other harmful activities

• minimize the potential for post-mission break-ups resulting from stored energy

• limit the long-term presence of spacecraft and launch vehicle orbital stages in protected regions after the end of their missions.

Since its foundation in 1993, IADC has conducted annual meetings to discuss research results in debris measurements, modelling, protection and mitigation.

IADC is internationally recognized as a center of competence for space debris and it also influences mitigation activities at the UNCOPUOS Scientific and Technical Subcommittee and at the Subcommittee for Space Systems and Operations (ISO-TC20/SC14) of the International Organization for Standardization. In order to guarantee an effective and balanced implementation of debris mitigation practices, identified control measures need to be based on an international consensus. As an example, the 2011 ISO standard 24113 defines primary debris mitigation requirements. This standard was adopted by the European Cooperation for Space Standardization, whose standards, via a formal ESA ‘ADMIN/IPOL’ instruction, are applicable to all ESA projects. Verification of compliance with the ISO standard can be supported by using ESA’s DRAMA tool.

The next step after technical definition and international standardization is the transfer of guidelines into actual regulations. While some countries have already taken this step and reflected space debris mitigation in their national regulations, worldwide implementation is still pending. In this context, the Scientific and Technical Subcommittee of UNCOPUOS recently achieved consensus on a set of guidelines that address this important implementation of regulations in the UN’s Member States.

 


 

 

Active Debris Removal

Mitigation measures proposed by IADC to control the growth in the number of space objects have been adopted by various countries and organizations. Over the past 15 years, between half and two thirds of all satellites initially operating in the GEO region have been reorbited to a graveyard disposal orbit, in line with IADC recommendations – an improving trend. For LEO, which is most sensitive to an onset of collisional cascading, the first comprehensive statistics on compliance show poor results regarding the clearing of the region within 25 years of mission completion. Only 25% of the rocket upper stages and 10% of the satellites in LEO perform an active maneuver in order to comply with the IADC recommendations. Fortunately, many satellites are inserted into orbits where they comply naturally.

Studies performed with long-term evolution models like DELTA have shown that a ‘business as usual’ scenario will lead to a progressive, uncontrolled increase of object numbers in LEO, with collisions becoming the primary debris source. The IADC mitigation measures will reduce the growth, but long-term proliferation is still expected, even with full mitigation compliance, and even if all launch activities are halted. This is an indication that the population of large and massive objects has reached a critical concentration in LEO.

Mitigation alone is therefore not sufficient, and it is necessary to introduce a program of remediation measures as well, namely ADR (Active Debris Removal). Studies at NASA and ESA show that, with a removal strategy focusing on large target masses, the environment can be stabilized if about five to ten objects are removed from LEO per year with the following priorities:

• objects with a high mass (largest environmental impact in terms of critical-size fragments)

• objects with a high collision probability (orbiting in densely populated regions)

• objects at high altitudes (long orbital lifetime of the object and of fragments in the event of a collision).

High-ranking hotspot regions have been identified at around 1000 km altitude and 82° inclination, at 800 km and 98°, and at 850 km and 71°. The concentration of critical-size objects in these narrow orbital bands could allow multi-target removal missions.

Actions to counter the exponential growth of space debris, such as mitigation and active removal, are most effective when they are applied early. The further the number of critical-size, intact objects in the debris environment deviates from a sustainable level, the more objects will have to be removed to suppress the additional growth and the multiplying effects. ESA’s internal studies show that continuous removal actions starting in 2060 would be 25% less effective in comparison to an immediate start.

ESA, as a space technology and operations agency, has identified active removal technologies as a strategic goal. ADR is necessary to stabilize the growth of space debris, but even more important is that any newly launched objects comply with post-mission disposal guidelines (namely orbital decay in less than 25 years). If this is not the case, most of the required ADR effort would go to compensate for the non-compliance of new objects.

Legal constraints associated with the ownership of space debris and related liability issues cannot be neglected and the responsibility for a coupled remover/target is shared between the object owners.

 

Planned Robotic Servicing Missions

1) ESA's e.Deorbit mission:

ESA’s CleanSpace Initiative is looking at the required technology developments, including advanced image processing, complex GNC (Guidance, Navigation and Control) and innovative robotics to capture debris. Technologies for a wide range of removal targets will be studied, including real applications. ‘e.Deorbit, to be launched in 2023, will be the first ADR mission conducted by ESA, with the objective of removing a large ESA-owned object from its current orbit and performing a controlled reentry into the atmosphere.

One high priority target is Envisat, an uncontrolled, ESA-owned satellite of approximately eight metric tons in an orbit of about 800 km altitude and 98° inclination. Recently ESA has performed a phase A study called e.Deorbit. It aimed at identifying the most suitable concept for the capture and active removal of such a large debris object. Envisat has been chosen as an exemplary target by the industrial partners. 26) 27)

The e.deorbit mission objective is to “Remove a single large ESA-owned space debris (Envisat) from the LEO (Low Earth Orbit) protected zone”. With this mission, ESA wants to pave the way for future ADR (Active Debris Removal) missions by removing a single large ESA-owned space debris from the protected LEO zone in the 2021-2024 timeframe. 28) 29)

In December 2016, ESA's member state ministers strongly supported a ‘maturation phase’ for e.Deorbit, to foster the various advanced technologies required to make the mission feasible, from autonomous guidance to advanced images processing, along with a suitable capture mechanism. 30)

Figure 51: Artist's rendition of ESA’s proposed e.Deorbit mission, shown left, using a robotic arm to catch a derelict satellite (image credit: ESA, David Ducros, 2016)
Figure 51: Artist's rendition of ESA’s proposed e.Deorbit mission, shown left, using a robotic arm to catch a derelict satellite (image credit: ESA, David Ducros, 2016)
Figure 52: The mission life cycle from launch by Vega to reentry of e.Deorbit, an ESA mission to remove a single large ESA-owned debris from orbit, which will be the first-ever active debris removal mission. It will place European industry at the forefront of the world's active removal efforts and space tug applications. The mission was presented at ESA's Council meeting at Ministerial level, Lucerne, Switzerland, on 1-2 December 2016 (image credit: ESA, David Ducros, 2016) 31)
Figure 52: The mission life cycle from launch by Vega to reentry of e.Deorbit, an ESA mission to remove a single large ESA-owned debris from orbit, which will be the first-ever active debris removal mission. It will place European industry at the forefront of the world's active removal efforts and space tug applications. The mission was presented at ESA's Council meeting at Ministerial level, Lucerne, Switzerland, on 1-2 December 2016 (image credit: ESA, David Ducros, 2016) 31)

 

2) NASA's Restore-L mission

NASA’s Restore-L mission is an ambitious, technology-rich endeavor to launch a robotic spacecraft in 2020 to refuel a live satellite. The mission — the first of its kind in LEO (Low Earth Orbit) — will demonstrate a carefully curated suite of satellite-servicing technologies. These on-orbit solutions for autonomous, on-orbit satellite rendezvous and grasping, with telerobotics-enabled refueling and satellite repositioning, could dramatically reduce or eliminate the need for crewed servicing flights from Earth.

In May 2016, NASA officially moved forward with plans to execute the ambitious, technology-rich Restore-L mission, an endeavor to launch a robotic spacecraft in 2020 to refuel a live satellite. The mission will demonstrate that a carefully curated suite of satellite-servicing technologies are fully operational. The current candidate client for this venture is Landsat-7, a government-owned satellite in LEO. 32) 33) 34)

NASA awarded the contract to SSL (Space Systems Loral) on Dec. 5, 2016 tasking the company with supplying a chassis, hardware and services for the mission. The Palo Alto, California-based satellite builder is responsible for supporting integration, test, launch and operations. 35)

April 10, 2017: SSL (Space Systems Loral (SSL) has successfully completed the SRR (Systems Requirements Review) for the Restore-L project to demonstrate satellite servicing in LEO (Low Earth Orbit). 36)

Figure 53: Artist's rendering of the Restore-L servicer extending its robotic arm to grasp and refuel a client satellite on orbit (image credit: NASA)
Figure 53: Artist's rendering of the Restore-L servicer extending its robotic arm to grasp and refuel a client satellite on orbit (image credit: NASA)

 

 

In developing the RSGS program, the US DARPA (Defense Advanced Research Projects Agency) seeks to:

• Demonstrate in or near GEO that a robotic servicing vehicle can perform safe, reliable, useful and efficient operations, with the flexibility to adapt to a variety of on-orbit missions and conditions.

• Demonstrate satellite servicing mission operations on operational GEO satellites in collaboration with commercial and U.S. Government spacecraft operators.

• Support the development of a servicer spacecraft with sufficient propellant and payload robustness to enable dozens of missions over several years.

RSGS is a research and demonstration effort that aims to speed the arrival of capabilities such as high-resolution inspection; correction of otherwise mission-ending mechanical anomalies such as solar array and antenna deployment malfunctions; assistance with relocation and other orbital maneuvers; and installation of attachable payloads, enabling upgrades to existing assets. 37)

DARPA Press Release on February 9, 2017: 38)

In an important step toward a new era of advanced, cost-effective robotic capabilities in space, DARPA today announced that it has selected Space Systems Loral (SSL), based in Palo Alto, CA, as its commercial partner for the Agency’s RSGS (Robotic Servicing of Geosynchronous Satellites) program. DARPA and SSL seek to develop technologies that would enable cooperative inspection and servicing of satellites in GEO (Geosynchronous Earth Orbit), about 36,000 km above the Earth, and demonstrate those technologies on orbit. If successful, this research and demonstration effort would open the door to radically lowering the risks and costs of operating in GEO, a harsh and difficult-to-access domain that is critically important for both military and civilian space assets.

Under an agreement drafted jointly by DARPA and SSL, the two entities would share costs and responsibilities for the program. While such public-private partnerships have become common in several domains of research and development — saving taxpayer dollars by requiring commercial partners to invest significantly in projects rather than simply receive government funding — the RSGS public-private effort would be a first for DARPA in the space-servicing domain. As such, the Agency’s selection of SSL and the pending agreement have been submitted for review by the Defense Department’s Under Secretary of Defense for Acquisition, Technology and Logistics.

With RSGS, DARPA plans to develop a robotic module, including hardware and software, and provide technical expertise and a Government-funded launch. SSL would provide a spacecraft and would be responsible for integrating the module onto it to create a robotic servicing vehicle (RSV) and the RSV onto the launch vehicle, as well as providing a mission operations center and staff.

After a successful on-orbit demonstration of the RSV, SSL would operate the vehicle and make cooperative servicing available to both military and commercial GEO satellite owners on a fee-for-service basis. In exchange for providing property to SSL, the Government would obtain reduced-priced servicing of its satellites and access to commercial satellite servicing data throughout the operational life of the RSV, again at great taxpayer savings. The capabilities that RSGS aims to make possible include:

- High-resolution inspection

- Correction of some types of mechanical anomalies, such as solar array and antenna deployment malfunctions

- Assistance with relocation and other orbital maneuvers

- Installation of attachable payloads, enabling upgrades or entirely new capabilities for existing assets

- Refueling.

“Servicing on orbit could provide significant cost savings compared to current practices and a major advantage to the security of both commercial and Government space assets,” said Gordon Roesler, DARPA’s program manager for RSGS. “The engineering challenges that need to be overcome to achieve this degree of facility at GEO are considerable, entailing significant technical risks but also carrying the potential for significant rewards. In addition to inspection and repair, RSGS robotics promise a new era in which satellite upgrades and enhancements at GEO are no longer just a dream.”

Figure 54: Illustration of the RSGS program RSV (Robotic Serving Vehicle) in GEO (image credit: DARPA, SSL)
Figure 54: Illustration of the RSGS program RSV (Robotic Serving Vehicle) in GEO (image credit: DARPA, SSL)

 


 

 

Sustainable Future in Space

The 7th European Conference on Space Debris took place at ESA/ESOC in Darmstadt, Germany from 18-21 April, 2017 — covering the most important topics in orbital space debris to explore the challenges for modern space flight. The conference provided a forum for presenting and discussing latest results, and for defining future directions of research. 39) 40)

The call for international action came on the final day of the European Conference on Space Debris, a gathering of over 350 participants from science, academia, industry and space agencies worldwide held at ESA’s mission control center, where the ESA Space Debris Office and the SSA effort are based. 41)

Figure 55: Decision-makers on stage at the media briefing following the 7th European Conference on Space Debris at ESA/ESOC. From left to right: Head of ESA’s Space Debris Office, Holger Krag; ESA Director General Jan Woerner; and German Federal Minister for Economic Affairs and Energy, Brigitte Zypries (image credit: ESA)
Figure 55: Decision-makers on stage at the media briefing following the 7th European Conference on Space Debris at ESA/ESOC. From left to right: Head of ESA’s Space Debris Office, Holger Krag; ESA Director General Jan Woerner; and German Federal Minister for Economic Affairs and Energy, Brigitte Zypries (image credit: ESA)

With more than 750 000 pieces of dangerous debris now orbiting Earth, the urgent need for coordinated international action to ensure the long-term sustainability of spaceflight is a major finding from Europe’s largest-ever conference on space debris.

“We require a coordinated global solution to what is, after all, a global problem that affects critical satellites delivering services to all of us,” said Brigitte Zypries, German Federal Minister for Economic Affairs and Energy, at a press briefing on the conference’s closing day in Darmstadt, Germany.

ESA Director General Jan Woerner appealed to space stakeholders to keep Earth’s orbital environment as clean as possible. Developing and implementing the ESA SSA (Space Situational Awareness) program as decided during ESA’s last ministerial council in 2016 will be a key factor. “In order to enable innovative services for citizens and future developments in space, we must cooperate now to guarantee economically vital spaceflight. We must sustain the dream of future exploration,” he said.

The call for international action came on the final day of the European Conference on Space Debris, a gathering of over 350 participants from science, academia, industry and space agencies worldwide held at ESA’s mission control center, where the ESA Space Debris Office and the SSA effort are based.

Findings from the week-long meeting were presented to media in front of Minister Zypries, who is also the German national aerospace coordinator, and Director General Woerner by senior ESA managers and representatives from the national space agencies of Italy, France, Germany and the UK, as well as the Committee on Space Research and the International Academy of Astronautics.

Addressing the space debris threat: The latest results of debris research were featured, especially the safe disposal of retired satellites and rocket stages and the still uncertain challenges posed by satellite megaconstellations being considered by commercial operators. “Only about 60% of the satellites that should be disposed of at the end of their missions under current guidelines are, in fact, properly managed,” noted Holger Krag.

Researchers also confirmed there is now a critical need to remove defunct satellites from orbit before they disintegrate and generate even more debris. “This means urgently developing the means for actively removing debris, targeting about 10 large defunct satellites from orbit each year, beginning as soon as possible – starting later will not be nearly as effective,” said Holger Krag.

Despite progress in technology, and in understanding the space environment, the need for significantly increasing the pace in applying proposed measures to reduce debris creation has been identified at Europe’s largest-ever space debris conference.

In this context, recent announcements of large constellations with several hundreds of satellites in critical orbital regimes has been identified as a potential additional challenge.

These were among the findings presented by senior scientists and representatives of the world’s leading space agencies and space-related scientific bodies during a press briefing from the week-long 7th European Conference on Space Debris at ESA’s mission control center in Darmstadt, Germany, today.

There was wide agreement that the continuing growth in space debris poses an urgent threat to economically and scientifically vital orbital regions.

Today’s active satellite infrastructure includes telecom, weather, navigation, broadcast and climate-monitoring missions, and these provide a multitude of critical services and daily benefits to citizens and economies. Their loss, due to their orbits being polluted by debris, would severely damage modern society.

There is a consensus that debris mitigation strategies defined long ago are important today as never before. The venting of residual energy from satellites and upper stages at the end of their missions to prevent explosive break-ups and the disposal of any sort of satellite through a final maneuver remain challenges.

Numerous novel solutions were presented to support these important mitigation measures. Many presentations emphasized that execution of these measures is becoming ever more important in view of the upcoming megaconstellations of thousands of satellites in low orbit.

“Fast and reliable implementation of mitigation measures for all missions and a change in the operational paradigm to consider space-object disposal as an important part of the overall mission are essential to contain the growth of the space debris population and to preserve space for future generations,” said Holger Krag, Head of ESA’s Space Debris Office and conference chair.

The conference demonstrated that the technology is available and the need is understood everywhere. However, implementation of these countermeasures is still a challenge, and this has the utmost importance in view of plans to deploy constellations of hundreds of satellites in space. Like all missions, such constellations must include provision for safe disposal when their missions end so that they do not contribute to the already unsustainably large population of debris objects.

Mitigation map is in place: Space debris mitigation measures have been adopted by most major space-faring agencies and companies and, if properly implemented by spacecraft designers and mission operators, can curtail the growth rate of the orbital debris population.

Active removal, however, is now necessary to reverse the debris increase, and researchers have seen evidence that the environment in some orbital regions has already reached a critical state.

To prevent this uncontrolled growth, the active removal or deorbiting of selected large defunct space objects is required in addition to the full application of mitigation measures.

 


 

 

First Laser Detection of Space Debris in Daylight

• August 4, 2020: Lasers on Earth are used to measure the position of space debris high above, providing crucial information on how to avoid in-space collisions. Until now, this technique has suffered from a fatal flaw. 43)

For some time, lasers could only be used to measure the distance to space debris during the few twilight hours in which the ‘laser ranging’ station on Earth is in darkness, but debris objects high above are still bathing in the last of the Sun’s rays.

Figure 56: Surveillance network. Concept for future space debris surveillance system employing ground-based optical, radar and laser technology as well as in-orbit survey instruments (image credit: ESA/Alan Baker, CC BY-SA 3.0 IGO)
Figure 56: Surveillance network. Concept for future space debris surveillance system employing ground-based optical, radar and laser technology as well as in-orbit survey instruments (image credit: ESA/Alan Baker, CC BY-SA 3.0 IGO)

In the same way that the Moon is brightest when it is glistening in sunlight while it is night on Earth, space debris is easier to spot when reflecting the Sun’s light as seen from a dark vantage point.

Because debris objects are so much closer to Earth, however, there is only a small window in which they are lit up but observers on Earth are not.

Now, a recent study has proved it is indeed possible, in full daylight, to use lasers to determine the distance to debris. This new laser ranging method will help improve orbit predictions for debris objects, drastically increasing the time available to make observations and keeping valuable spacecraft safe. 44)

By using a special combination of telescopes, detectors and light filters at specific wavelengths, researchers have found that it is in fact possible to increase the contrast of objects with respect to the daylight sky, revealing objects previously hiding in plain sight.

“We are used to the idea that you can only see stars at night, and this has similarly been true for observing debris with telescopes, except with a much smaller time window to observe low-orbit objects,” explains Tim Flohrer, Head of ESA’s Space Debris Office.

Using this new technique, it will become possible to track previously ‘invisible’ objects that had been lurking in the blue skies, which means we can work all day with laser ranging to support collision avoidance.”

Debris Dancing in Darkness

Our planet is shrouded in a veil of debris - millions of small, but dangerous, fragments left over from previous space launches and in-orbit explosions and collisions.

Even millimeter-sized fragments, travelling about seven kilometers/second, can damage a satellite upon impact, but collision with a dead spacecraft or large fragments can destroy functioning missions altogether.

As such, it’s important to understand where debris fragments are so that we can avoid them - but getting this information isn’t easy.

Laser ranging is a very well established technology that uses a laser on Earth to send pulses of light to a satellite carrying a reflector.

By measuring how long it takes for the signal to return to a telescope on Earth, known as the ‘two-way travel time’, the distance to the satellite can be precisely determined.

Unfortunately, few satellites carry a ‘retro-reflector’ that would allow light to be easily reflected and returned to Earth. Determining the distance to such objects was demonstrated only a few years ago, and the development of the related technologies is progressing rapidly.

Detecting Debris in Daylight

During the recent tests, 40 different debris objects (and stars approximately 10 times fainter than what can be seen by the naked eye) were observed using the new technique, standing out against a blue sky, for the first time observed in the middle of the day – something that would not have been possible before.

“We expect that these results will significantly increase debris observation times in the near future,” explains Michael Steindorfer from the Austrian Academy of Sciences.

“Ultimately it means we will get to know the debris population better, allowing us to better protect Europe’s space infrastructure”.

Further development of such technologies is a core objective of ESA’s Space Safety program, including establishing a network of space debris laser ranging stations.

A new laser station next to ESA’s well-known Optical Ground Station (OGS) in the Canary Islands is awaiting deployment, which will serve as a ‘test-bed’ for laser ranging technologies, as well as developing networking concepts.

Figure 57: ESA's Optical Ground Station (OGS) is 2400 m above sea level on the volcanic island of Tenerife. Visible green laser beams are used for stabilizing the sending and receiving telescopes on the two islands. The invisible infrared single photons used for quantum teleportation are sent from the neighboring island La Palma and received by the 1 m Telescope located under the dome of the OGS. Initial experiments with entangled photons were performed in 2007, but teleportation of quantum states could only be achieved in 2012 by improving the performance of the set-up. — Aside from inter-island experiments for quantum communication and teleportation, the OGS is also used for standard laser communication with satellites, for observations of space debris or for finding new asteroids. The picture is a multiple exposure also including Tenerife's Teide volcano and the Milky Way in the background (image credit: IQOQI Vienna, Austrian Academy of Sciences)
Figure 57: ESA's Optical Ground Station (OGS) is 2400 m above sea level on the volcanic island of Tenerife. Visible green laser beams are used for stabilizing the sending and receiving telescopes on the two islands. The invisible infrared single photons used for quantum teleportation are sent from the neighboring island La Palma and received by the 1 m Telescope located under the dome of the OGS. Initial experiments with entangled photons were performed in 2007, but teleportation of quantum states could only be achieved in 2012 by improving the performance of the set-up. — Aside from inter-island experiments for quantum communication and teleportation, the OGS is also used for standard laser communication with satellites, for observations of space debris or for finding new asteroids. The picture is a multiple exposure also including Tenerife's Teide volcano and the Milky Way in the background (image credit: IQOQI Vienna, Austrian Academy of Sciences)

 

 


References

1) Donald J. Kessler, Burton G. Cour-Palais, “Collision Frequency of Artificial Satellites: The Creation o f a Debris Belt,” Journal of Geophysical Research, Vol. 83, No A6, June 1, 1978, URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA083iA06p02637

2) Jeff Foust, ”Russian ASAT debris creating “squalls” of close approaches with satellites,” SpaceNews, 18 February 2022, URL: https://spacenews.com/russian-asat-debris-creating-squalls-of-close-approaches-with-satellites/

3) Jeff Foust, ”China proposes formal lines of communication with U.S. on space safety,” SpaceNews, 15 February 2022, URL: https://spacenews.com/china-proposes-formal-lines-of-communication-with-u-s-on-space-safety/

4) Jeff Foust, ”Nelson and Rogozin talk about ASAT test,” SpaceNews, 16 November 2021, URL: https://spacenews.com/nelson-and-rogozin-talk-about-asat-test/

5) Sandra Erwin, ”Russia clearly knew the consequences of ASAT test, says former U.S. intelligence official,” SpaceNews, 16 November 2021, URL: https://spacenews.com/
russia-clearly-knew-the-consequences-of-asat-test-says-former-u-s-intelligence-official/

6) Andrew Jones, ”European space industry alarmed by Russian ASAT test,” SpaceNews, 16 November 2021, URL: https://spacenews.com/european-space-industry-alarmed-by-russian-asat-test/

7) Debra Werner, ”LeoLabs tracks debris cloud expanding in low Earth orbit,” SpaceNews, 16 November 2021, URL: https://spacenews.com/leolabs-on-asat-debris/

8) ”Russian ASAT Test Creates Thousands of Pieces of Space Debris, Imperils ISS,” Space Policy Online.com, 15 November 2021, URL: https://spacepolicyonline.com/news/
russian-asat-test-creates-thousands-of-pieces-of-space-debris-imperils-iss/

9) Marc Etkind, Jackie McGuinness,”NASA Administrator Statement on Russian ASAT Test,” NASA Press Release 21-156, 15 November 2021, URL: https://www.nasa.gov/press-release/nasa-administrator-
statement-on-russian-asat-test

10) Jeff Foust, ”Russia destroys satellite in ASAT test,” SpaceNews, 15 November 2021, URL: https://spacenews.com/russia-destroys-satellite-in-asat-test/

11) ”ESA's Space Environment Report 2021,” ESA Safety & Security, Space Debris, 27 May 2021, URL: https://www.esa.int/Safety_Security/Space_Debris/ESA_s_Space_Environment_Report_2021

12) ”The impact of space debris,” ESA Safety & Security, 24 March 2021, URL: https://www.esa.int/ESA_Multimedia/Images/2021/03/The_impact_of_space_debris

13) ”The history of space debris creation,” ESA Safety & Security, 17 March 2021, URL: https://www.esa.int/ESA_Multimedia/Images/2021/03/The_history_of_space_debris_creation

14) ”We're launching more than ever,” ESA Safety & Security, 03 March 2021, URL: https://www.esa.int/ESA_Multimedia/Images/2021/03/We_re_launching_more_than_ever

15) ”Falling to Earth takes a long time,” ESA Safety & Security, 17 February 2021, URL: https://www.esa.int/ESA_Multimedia/Images/2021/02/Falling_to_Earth_takes_a_long_time

16) ”ESA and UNOOSA illustrate space debris problem,” ESA / Safety & Security / Space Debris, 10 February 2021, URL: https://www.esa.int/Safety_Security/Space_Debris/ESA_and_UNOOSA_illustrate_space_debris_problem

17) ”The current state of space debris,” ESA Safety & Security, 12 October 2020, URL: https://www.esa.int/Safety_Security/Space_Debris/The_current_state_of_space_debris

18) K. Fletcher, ”Space Debris: The ESA Approach,” ESA, BR-336, March 2017, http://esamultimedia.esa.int/multimedia/publications/BR-336/offline/download.pdf

19) Orbital Debris Quarterly News, Vol. 21, Issue 1, p. 12, Feb. 2017, NASA, URL: https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv21i1.pdf

20) ”Dodging debris to keep satellites safe,” ESA Safety & Security, 22 April 2021, URL: https://www.esa.int/ESA_Multimedia/Videos/2021/04/Dodging_debris_to_keep_satellites_safe

21) ”Recognizing sustainable behavior,” ESA, 6 May 2019, URL: http://www.esa.int/Our_Activities/Space_Safety/Space_Debris/Recognising_sustainable_behaviour

22) ”Rocket break-up provides rare chance to test debris formation,” ESA, 12 April 2019, URL: http://m.esa.int/Our_Activities/Operations/Space_Safety_Security/
Rocket_break-up_provides_rare_chance_to_test_debris_formation

23) ”Deimos Sky Survey Spots Debris Resulting from the Fragmentation of an Atlas V Rocket Body,” Deimos Elecnor Group, 1 April 2019, URL: http://www.elecnor-deimos.com/fragmentation-event/

24) ”Space debris user portal,” URL: https://sdup.esoc.esa.int/web/csdtf/home

25) ”ESA's reentry predictions,” URL: https://reentry.esoc.esa.int/index.html

26) “Baseline Concepts of the Kayser-Threde Team,” e.Deorbit Symposium, Noordwijkerhout, The Netherlands, May 6, 2014, URL: https://indico.esa.int/event/46/attachments/1989/2329/KT_HAARMANN_Edeorbit.pdf

27) Jan-Christian Meyer, Marc Scheper, Rolf Janosvsky, Javier Vazquez Mato, Gonzalo Taubmann, Jaime Cavia Eguen, Ronan Le Letty, “Clamping mechanism – a tentacles based capture mechanism for Active Debris Removal,” Proceedings of the 65th International Astronautical Congress (IAC 2014), Toronto, Canada, Sept. 29-Oct. 3, 2014, paper: IAC-14-A6.5.1

28) Robin Biesbroek, Luisa Innocenti, Stéphane Estable, Michael Oswald, Richard Haarmann, Gerrit Hausmann, Carole Billot, Simona Ferraris, ”The e.Deorbit mission: results of ESA’s phase A studies for an Active Debris Removal mission,” Proceedings of the 66th International Astronautical Congress (IAC 2015), Jerusalem, Israel, Oct.12-16, 2015, paper: IAC-15-A6.6.5

29) ”e.Deorbit: it is time to make active debris removal a reality for the European space sector,” ESA, Jan. 30, 2017, URL: http://blogs.esa.int/cleanspace/2017/01/30/
e-deorbit-it-is-time-to-make-active-debris-removal-a-reality-for-the-european-space-sector/

30) ”e.Deorbit grabbing debris,” ESA, January 18, 2017, URL: http://m.esa.int/spaceinimages/Images/2016/12/e.Deorbit_grabbing_debris

31) ”e.Deorbit mission lifecycle,” ESA, 23 Nov. 2016, URL: http://m.esa.int/spaceinimages/Images/2016/12/e.Deorbit_mission_lifecycle

32) Adrienne Alessandro, ”Restore-L Mission to Demonstrate Technology by Refueling Landsat-7,” NASA, June 23, 2016, URL: http://landsat.gsfc.nasa.gov/
nasas-restore-l-mission-to-demonstrate-crosscutting-technologies-by-refueling-landsat-7/

33) ”Restore-L Robotic Servicing Mission,” NASA, URL: https://sspd.gsfc.nasa.gov/restore-l.html

34) Bringing Restore-L to Life,” NASA Restore-L Factsheet, URL: https://www.nasa.gov/sites/default/files/atoms/files/restore_l_factsheet_062816_01.pdf

35) Caleb Henry, ”NASA’s Restore-L contract nudges SSL closer to in-orbit servicing ,” Space News, Dec. 6, 2016, URL: http://spacenews.com/nasas-restore-l-contract-nudges-ssl-closer-to-in-orbit-servicing/

36) ”SSL's Serious Satellite Servicing Demo Success for the Restore-L Project,” Satnews Daily, April 10, 2017, URL: http://www.satnews.com/story.php?number=869458979

37) Doug Messier, ”DARPA Robotic Servicing of Geosynchronous Satellites (RSGS) Program Fact Sheet,” Parabolic Arc, Feb. 9, 2017, URL: http://www.parabolicarc.com/2017/02/09/
darpa-robotic-servicing-geosynchronous-satellites-rsgs-program-fact-sheet/

38) ”DARPA Selects SSL as Commercial Partner for Revolutionary Goal of Servicing Satellites in GEO — PPP (Public Private Partnership) to develop on-orbit robotic servicer that would radically lower the risk and cost of space operations,” Feb. 9, 2017, URL: http://www.darpa.mil/news-events/2017-02-09

39) 7th European Conference on Space Debris, ESA/ESOC, Darmstadt, Germany, April 18-21, 2017, URL: https://conference.sdo.esoc.esa.int/

40) http://www.esa.int/Our_Activities/Operations/Space_Debris

41) ”Call for a sustainable future in space,” ESA, 21 April 2017, URL: http://m.esa.int/Our_Activities/Operations/Space_Debris/Call_for_a_sustainable_future_in_space

42) ”International consensus on debris threat,” ESA, 21 April 2017, URL: http://m.esa.int/Our_Activities/Operations/Space_Debris/International_consensus_on_debris_threat

43) ”First laser detection of space debris in daylight,” ESA / Safety & Security / Space Debris, 04 August 2020, URL: http://www.esa.int/Safety_Security/Space_Debris/First_laser_detection_of_space_debris_in_daylight

44) Michael A. Steindorfer, Georg Kirchner, Franz Koidl, Peiyuan Wang, Beatriz Jilete & Tim Flohrer, ”Daylight space debris laser ranging,” Nature Communications volume, Volume 11, Article number: 3735 (2020), Published: 04 August 2020, https://doi.org/10.1038/s41467-020-17332-z , URL: https://www.nature.com/articles/s41467-020-17332-z.pdf
 


The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: ”Observation of the Earth and Its Environment: Survey of Missions and Sensors” (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (eoportal@symbios.space).

Space Debris Environment    Space Debris Measurements    Active Debris Removal
Call for sustainable future    First laser detection    References   Back to Top