Minimize Search Missions

JPSS (Joint Polar Satellite System)

Spacecraft   Development Status   Launch   Sensor Complement   Ground Segment   References

JPSS is the next generation polar-orbiting operational environmental satellite system of the USA, procured by NOAA (National Oceanic and Atmospheric Administration) through NASA, with the following major objectives: 1) 2) 3) 4) 5) 6)

• Increase timeliness and accuracy of severe weather event forecasts

• Provide advanced atmospheric temperature, moisture and pressure profiles from space

• Provide advanced imaging capability to analyze fires, volcanoes, Gulf oil tracking and other adverse incidents

• Direct broadcast data to field terminals at hour scale latency

• Maintain continuity of climate observations and critical environmental data from the polar orbit.

1) JPSS consists of three satellites (Suomi-NPP, JPSS-1, JPSS-2), ground system and operations through 2025

- The JPSS mission is to provide global imagery and atmospheric measurements using polar-orbiting satellites

2) JPSS is a partnership between NOAA and NASA

- NOAA has final decision authority and is responsible for overall program commitment

- JPSS Program is the subset of JPSS managed by NASA

- NASA is the acquisition agent for the flight system (satellite, instruments and launch vehicle), ground system, leads program systems engineering, and program safety and mission assurance

- NOAA is responsible for operations, data exploitation and archiving, infrastructure.

3) The partnership is governed by the NOAA and NASA JPSS Management Control Plan

- The JPSS Program is executed in accordance with NPR 7120.5D (NASA Procedural Requirements) as a loosely-coupled program

4) NASA Categorization for JPSS-1 and JPSS-2

- Mission Category 1

- Risk Class B Mission

- Category 2 Expendable Launch Vehicle

JPSS represents significant technological and scientific advances in environmental monitoring and will help advance environmental, weather, climate, and oceanographic science. JPSS's primary user, NOAA's NWS (National Weather Service), will use the JPSS data in models for medium- and long-term weather forecasting. JPSS will allow scientists and forecasters to monitor and predict weather patterns with increased speed and accuracy and is the key for continuity of long-standing climate measurements, allowing the study of long-term climate trends. JPSS will improve and extend climate measurements for 30 different EDRs (Environmental Data Records) of the atmosphere, land, ocean, climate and space environment. 7)

 

Some background:

Since the 1960's the United States has operated two separate polar-orbiting environmental satellite programs:

- NOAA's POES (Polar-orbiting Operational Environmental Satellite) series

- USAF's DMSP (Defense Metrological Satellite Program) series.

• In 19994, the NPOESS (National Polar-orbiting Environmental Satellite System) program was created (under a Presidential Decision Directive) with the expectation that combining the civil (POES) and military (DMSP) programs would reduce duplication and result in cost savings

• A tri-agency IPO (Integrated Program Office) was formed to manage the program

- NOAA was responsible for overall program management of the converged system and satellite operations

- USAF (United States Air Force) was responsible for acquisition

- NASA responsible for technology insertion.

• Program was to launch NPP (NPOESS Preparatory Project) to reduce risk

• The first NPOESS contract awarded in 2002

- Program estimated to cost $7 billion through 2018

- Scope of program included six satellites (three orbits) each hosting up to 13 instruments, and a ground system.

• NPOESS program encountered significant challenges

- Technical challenges in VIIRS sensor development

- Program cost growth

- Schedule delays

• By 2005, the cost had increased to $10 billion and the first launch had to be delayed from 2008 to 2010

• A decision to restructure the program was made in 2006

- Driven by a Nunn-McCurdy breach

- Satellites reduced from six to four (in two orbits) – EUMETSAT would provide mid-morning orbit

- Number of instruments reduced from 13 to nine

• Even after restructure, program continued to encounter issues

- Technical issues continued with VIIRS

- Management challenges with governance structure

- Cost increases – expected to exceed $14 billion

- Further schedule delays. The major challenge of NPOESS was jointly executing the program between three agencies of different size with divergent objectives and different acquisition procedures.

• In 2009, EOP/OSTP (Executive Office of the President/Office of Science and Technology Policy) led a task force to investigate management and acquisition options that would improve NPOESS. An IRT (Independent Review Team) concluded that the current NPOESS program, in the absence of managerial and funding adjustments, has a low probability of success and data continuity is at extreme risk. The Office of Science and Technology, with the Office of Management and Budget and the National Security Council, as well as representatives from each agency, examined various options to increase the probability of success and reduce the risk to data continuity.

In February 2010, with the release of the FY2011 President's Budget, OSTP announced the restructure of the NPOESS program – specifically, NOAA and DoD would be responsible for different orbits. 8) 9) 10)

- NOAA responsible for the afternoon orbit - JPSS

- DoD responsible for the early morning orbit - DWSS (Defense Weather Satellite System)

- Partnership with EUMETSAT would continue for mid-morning orbit

- Both agencies would share a common ground system.

• Restructure codified and executed through:

- National Space Policy

- Administration's Implementation Plan for Polar-orbiting Environmental Satellites

- NPOESS Deputies Meeting Summary

- Series of DoD Acquisition Decision Memorandums: Continued support to NPP; Close out of the IPO; Transfer of sensors and ground system from DoD to NOAA/NASA; Identified sensor suite on DWSS.

The Administration decision for the restructured JPSS (Joint Polar Satellite System) will continue the development of critical Earth observing instruments required for improving weather forecasts, climate monitoring, and warning lead times of severe storms. NASA's role in the restructured program will be modeled after the procurement structure of the successful POES (Polar Operational Environmental Satellite) and GOES (Geostationary Operational Environmental Satellite) programs, where NASA and NOAA have a long and effective partnership. The partner agencies are committed to maintaining collaborations towards the goal of continuity of Earth observations from space.

Note: Since this transition, the DWSS satellite program has been canceled and replaced with the WFO (Weather Follow On) program. As part of the restructuring of the program, some responsibilities have been shifted to accomplish the environmental and climate observing missions. For JPSS, NASA's Goddard Space Flight Center has the responsibility for the acquisition for the afternoon orbit satellites, along with the acquisition, system engineering and integration for the Ground System (GS) for the US next-generation of weather and climate satellites. After the start of the JPSS program, the DWSS, which was to be responsible for the early morning orbit satellites, was cancelled due to lack of funding. EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) will be relied on for the mid-morning orbit satellites of the MetOp series (Ref. 101).

• The JPSS program successfully completed two key reviews in July 2013 at NASA/GSFC. The JPSS program is continuing on schedule and on budget toward the March 2017 launch of the JPSS-1 polar-orbiting weather satellite. NASA is developing and acquiring the JPSS-1 mission for NOAA (National Oceanic and Atmospheric Administration). 11)

 

JPSS_Auto1F

Figure 1: JPSS implements US civil commitment inter-agency and international agreements to afford a 3-orbit global coverage (image credit: NOAA, NASA)

JPSS_Auto1E

Figure 2: JPSS overview (image credit: NOAA, NASA, Ref. 1)

The restructured Joint Polar Satellite System is planned to provide launch readiness capability in FY 2015 and FY 2018 (with launches of JPSS-1 in 2017 and JPSS-2 in 2022, respectively) in order to minimize any potential loss of continuity of data for the afternoon orbit in the event of an on orbit or launch failure of other components in the system. Final readiness dates will not be baselined until all transition activities are completed.

The United States JPSS (Joint Polar Satellite System) is the new generation of POES (Polar Operational Environmental Satellites) in the early afternoon sun-synchronous orbit. The Joint NOAA/NASA Suomi-NPP (National Polar Partnership ) mission is the first of the JPSS missions. It has achieved nearly four years of successful on-orbit observations and was declared primary satellite for weather in May of 2014. 12)

• JPSS is the next generation of U.S. civil operational polar-orbiting satellites, and includes Suomi NPP

• The JPSS program, including agreements with EUMETSAT, JAXA and DoD.

• NOAA plans and directs the program, while NASA acts as the acquisition agent for flight and elements of the ground system.

• JPSS provides operational continuity of satellite-based observations and products beyond the current NOAA Polar-orbiting satellites series.

• The JPSS program is on budget and on schedule to launch the next satellite, JPSS-1, in 2017 and after successful launch becomes NOAA-20

• JPSS implements U.S. Space Policy and international agreements to ensure global coverage.

• NOAA's polar satellite covers the afternoon orbit, EUMETSAT's satellite MetOp covers the mid-morning orbit and DoD covers the early morning orbit.

• The data from these three orbits are fundamental to the 3-7 day forecast to provide advanced warning of severe weather, as well as environmental monitoring .

• JAXA provides microwave imagery used for a variety of applications; most importantly of precipitation in areas not covered by radar.

Table 1: JPSS overview — it is integral to 3-orbit global polar coverage as outlined in Figure 1

JPSS_Auto1D

Figure 3: NOAA & Partner polar weather satellite programs - continuity of weather observations, as of April 2015 (image credit: NOAA) 13)

JPSS_Auto1C

Figure 4: NOAA POES continuity of weather observations (image credit: NOAA)

JPSS_Auto1B

Figure 5: Simplified schematic composition of the JPSS system (image credit: NASA, NOAA)

 


 

Spacecraft:

The JPSS spacecraft are procured at NASA/GSFC. NASA in turn awarded a contract to BATC (Ball Aerospace and Technologies Corporation) of Boulder, CO to design and develop the JPSS-1 spacecraft bus, the OMPS (Ozone Mapping and Profiler Suite) instrument, integrating all instruments, and performing satellite-level testing and launch support. 14) 15)

JPSS-1, a clone of the Suomi-NPP (also referred to as SNPP) satellite, employs the BCP-2000 (Ball Commercial Platform -2000) spacecraft bus.

• 3-axis stabilized (50 arcsec control, 21 arcsec knowledge, and 75 m position)

• Launch mass of 2540 kg

• Power: 1932 W (BOL)

• For JPSS-1, Ball is converting the NPP spacecraft design from IEEE 1394 (FireWire) to a SpaceWire databus protocol for use by the CrIS and the VIIRS instruments.

• Ka-band 300 Mbit/s downlink. In addition, a backup Ka-band SMD (Science Mission Data) downlink is added for TDRSS (Tracking and Data Relay Satellite System) transmissions (to improve future latency issues). 16)

• X-band 15 Mbit/s HRD (High Rate Data) direct broadcast to users

• Lifetime: 7 years

JPSS_Auto1A

Figure 6: Illustration of the deployed JPSS-1 spacecraft (image credit: NASA, NOAA) 17)

JPSS_Auto19

Figure 7: JPSS-1 spacecraft zenith deck layout (left) and nadir deck layout (right), image credit: BATC 18)

 

JPSS development status:

• September 5, 2017: NOAA's JPSS-1 satellite arrived at Vandenberg Air Force Base in California on Sept. 1, 2017, to begin preparations for a November launch. 19)

- After its arrival, the JPSS-1 spacecraft was pulled from its shipping container, and is being prepared for encapsulation on top of the rocket that will take it to its polar orbit at an altitude of 824 km above Earth. JPSS-1 is the first in a series of NOAA's four next-generation, polar-orbiting weather satellites.

JPSS_Auto18

Figure 8: Photo of JPSS-1, arriving at the Astrotech Processing Facility at Vandenberg Air Force Base in California (image credit: NASA, Michael A. Starobin)

• March 6, 2017: NASA's Launch Services Program has selected United Launch Alliance's (ULA's) proven Atlas V vehicle to launch the Joint Polar Satellite System (JPSS-2) mission, the third in the nation's new generation polar-orbiting operational environmental satellite system—this award resulted from a competitive Launch Service Task Order evaluation under the NASA Launch Services II contract. 20)

- The JPSS-2 mission is scheduled to launch in the summer of 2021 from Space Launch Complex-3 at Vandenberg Air Force Base in California. This mission will launch aboard an Atlas V 401 vehicle.

• On 15 December 2016, Europe and the US achieved another milestone in the cooperation on meteorological satellite systems when Marc Cohen, EUMETSAT Associate Director for LEO Programs and Harry A. Cikanek III, NOAA Director, Joint Polar Satellite System signed the plan that will implement the JPS (Joint Polar System). 21)

- The Polar System PIP (Program Implementation Plan) encompasses the space and ground segments associated with EUMETSAT's Polar System Second Generation (EPS-SG) and the JPSS ( Joint Polar Satellite System) of NOAA ( National Oceanic and Atmospheric Administration). It also regulates the use of assets and operations as well as access to third party mission products such as the Copernicus Earth Observation Program of the EU and the NOAA COSMIC (Constellation Observing System for Meteorology Ionosphere and Climate) missions and follow-on partnerships.

• July 7, 2016: As highlighted in a May 2016 report of GAO (Government Accounting Office), the NOAA JPSS program has continued to make progress in developing the JPSS-1 satellite for a March 2017 launch. However, the program has experienced technical challenges which have resulted in delays in interim milestones. In addition, NOAA faces the potential for a near-term gap in satellite coverage of 8 months before the JPSS-1 satellite is launched and completes post-launch testing (Figure 9). 22)

- However, uncertainties remained on the best timing for launching these satellites, in part because of the potential for some satellites already in orbit to last longer. NOAA did not provide sufficient evidence that it had evaluated the costs and benefits of launch scenarios for these new satellites based on updated life expectancies. Until this occurs, NOAA may not make the most efficient use of investments in the polar satellite program.

JPSS_Auto17

Figure 9: Timeline for a Potential Gap in Polar Satellite Data in the Afternoon Orbit. The GAO analysis is based on NOAA and NASA data (image credit: GAO)

• NOAA's JPSS-1 satellite, the second in the JPSS satellite series, is slated for launch in early 2017 aboard a Delta-2 launch vehicle from Vandenberg Air Force Base in California. To prepare, the spacecraft is currently going through an array of tests designed to simulate the extreme environments the satellite may experience during launch and while in orbit. During the testing period, JPSS-1 and its instruments will be subjected to a variety of harsh conditions, including acoustical bombardment, intense vibration, electromagnetic fields, thermal vacuum environments and ground system compatibility tests. 23)

- The tests are taking place at BATC where the spacecraft was assembled. The satellite will be placed inside a large vacuum chamber, where it will be exposed to a simulated space environment complete with extreme hot and cold temperatures ranging from 10 degrees Celsius above and below what it could experience in space. The satellite will also undergo vibration and acoustic testing to simulate the experience of launching into space aboard a rocket, and electromagnetic testing to ensure it is properly protected from electromagnetic phenomena in space, such as solar flares.

- JPSS-1 takes advantage of the successful technologies developed through the NOAA/NASA Suomi-NPP satellite and has a design life of seven years.

• April 22, 2016: On behalf of NOAA, NASA has awarded a sole source contract modification to Ball Aerospace & Technologies Corporation of Boulder, Colorado, for two OMPS (Ozone Mapping and Profiling Suite) instruments for flight on NOAA's JPSS (Joint Polar Satellite System) Polar Follow On JPSS-3 and JPSS-4 missions. 24)

• March 17, 2016: On behalf of NOAA, NASA has awarded a sole source contract modification to Northrop Grumman, of Azusa, California, for two ATMS (Advanced Technology Microwave Sounder) instruments for NOAA's JPSS (Joint Polar Satellite System) Polar Follow On / JPSS-3 and JPSS-4 Missions. 25)

• February 11, 2016: The fifth and final instrument, the ATMS (Advanced Technology Microwave Sounder), an instrument critical to forecasting weather three to seven days in advance, has been integrated with the JPSS-1 satellite. This marks a very significant milestone for the JPSS program. Soon, the spacecraft will be prepared for the environmental testing phase which is the next step toward launch. 26)

- Compared with NOAA's legacy microwave sounders, ATMS offers more channels and better resolution and collects a wider swath of data. ATMS will be operating in tandem with CrIS (Cross-track Infrared Sounder) aboard the JPSS-1 satellite. By working together to cover more of the electromagnetic spectrum (microwave and infrared), ATMS and CrIS will provide coverage of a broad range of weather conditions.

- ATMS is built by Northrop Grumman in Azusa, California and was delivered to BATC in Boulder, Colorado where it was integrated with the spacecraft. ATMS currently flies on the NOAA/NASA Suomi NPP satellite mission and will fly on the JPSS-1, JPSS-2, JPSS-3, and JPSS-4 satellite missions.

JPSS_Auto16

Figure 10: Ball Aerospace technicians lower the ATMS instrument onto the JPSS-1 spacecraft (image credit: BATC)

• Fall 2015: The solar panel array on NOAA's polar-orbiting satellite JPSS-1 spacecraft successfully completed deployment testing at BATC. Engineers unfurled the three panels of the solar array on a special friction reducing floor that helps simulate deployment in the zero-gravity environment of space. The solar array is folded up at launch and deploys on orbit, resembling a giant black wing and generating more than 2775 W of power for NOAA's JPSS-1 satellite. 27)

• June 30, 2015: BATC has powered the JPSS-1 satellite for the first time. Powering on of the satellite is a key milestone to delivery. Following powering on, the satellite performed within specifications. 28)

- Ball earlier completed integration of four of five JPSS-1 flight instruments. The latest milestone means the satellite is moving toward environmental testing by early 2016 with on-time delivery scheduled for late 2016.

JPSS_Auto15

Figure 11: JPSS-1 has been powered-on for the first time, advancing the polar-orbiting environmental satellite toward environmental testing and delivery in 2016 (image credit: BATC)

• April 9, 2015: The CrIS (Cross-track Infrared Sounder) has been successfully integrated with the spacecraft. CrIS follows successful integration of the Ozone Mapping and Profiler Suite-Nadir (OMPS-N) instrument, the Clouds and the Earth's Radiant Energy System (CERES), and the Visible Infrared Imaging Radiometer Suite (VIIRS). 29)

- Following integration of the final instrument to fly on JPSS-1, ATMS (Advanced Technology Microwave Sounder) later this year, the JPSS-1 satellite will enter environmental testing. 30)

JPSS_Auto14

Figure 12: Photo of the CrIS instrument which is being moved into position just prior to integration with the JPSS-1 spacecraft (image credit: BATC)

• March 10, 2015: The VIIRS (Visible Infrared Imaging Radiometer Suite) has been successfully integrated on- board NOAA's Joint Polar Satellite System-1 (JPSS-1) satellite. The VIIRS instrument, built by the Raytheon Company in El Segundo, California, is the third instrument to be integrated on the spacecraft by Ball Aerospace & Technologies Corp. in Boulder, Colorado. 31)

• Feb. 18, 2015: The CrIS (Cross-track Infrared Sounder) has completed its pre-shipment review. The completion of the development of the CrIS instrument marks another important step in the on-time completion of the critical instruments for the JPSS-1 spacecraft. 32)

• June 17, 2014: The CERES (Clouds and the Earth's Radiant Energy System) instrument, was delivered to Ball Aerospace for spacecraft integration on June 17, 2014. 33)

• June 12, 2014: The OMPS instrument successfully completed its pre-shipment review. 34)

• April 25, 2014: CERES, the first of five instruments that will fly on JPSS-1, successfully completed pre-shipment review last week. 35)

• March 2014: BATC has applied power to the JPSS-1 spacecraft bus for the first time, a significant milestone for achieving on-time delivery to NOAA. Power-on is the first time that the spacecraft bus is operated as a system with the core EDPS (Electrical Power & Distribution System) and the integrated components of the C&DH (Command & Data Handling) subsystem. Power will be cycled on/off continuously over the next nine months of spacecraft integration and testing. 36)

• February 2014: BATC has successfully completed the SpaceWire interoperability test for the JPSS-1 satellite and has begun spacecraft bus integration. The scope of the test, conducted under both normal and fault conditions, proved the functionality of links using flight-like engineering models of key JPSS-1 spacecraft bus subsystems and engineering models for VIIRS and CrIS. The three additional JPSS-1 instruments include the ATMS , CERES, and the Ball Aerospace-built OMPS (Ozone Mapping and Profiler Suite). 37)

• In December 2012, a four-day delta Critical Design Review (dCDR) of work was conducted at BATC with representatives of NASA and NOAA and the instrument providers. With this successful review, the spacecraft has now been approved to proceed into implementation. 38)

• April 2014: CERES (Clouds and the Earth's Radiant Energy System), the first of five instruments that will fly on JPSS-1, NOAA's next polar orbiting environmental satellite, successfully completed pre-shipment review. 39)

JPSS_Auto13

Figure 13: JPSS-1 satellite, including instruments and other key components (image credit: NOAA, BATC)

 

Launch: The JPSS-1 spacecraft was launched on 18 November 2017 (09:47:36 UTC) on a Delta-2-7920 vehicle of ULA (United Launch Alliance) from VAFB, CA. 40) 41) 42) 43)

Orbit: Sun-synchronous orbit, altitude of 824 km, inclination = 98.7º, period = 101 minutes, ground track: 20 km repeat accuracy at the equator with 20 day repeat cycle, LTAN = 13:30 hours ±10 minutes.

Once in orbit, the JPSS-1 spacecraft will be known as NOAA- 20 (once in orbit). This naming ensures the satellite will be identified consistently with previous NOAA operational polar satellite missions dating back to 1978. The previous satellite launched in 2011, the NOAA/NASA Suomi NPP satellite, serves as a bridge from legacy missions to JPSS. 44)

JPSS-1 is the first in NOAA's series of four, next-generation operational environmental satellites designed to circle the Earth in a polar orbit. JPSS represents significant technological and scientific advancements in observations used for severe weather prediction and environmental monitoring. This data is used by NOAA's National Weather Service for numerical forecast models, ultimately helping emergency managers make timely decisions on life-saving early warnings and evacuations.

Secondary payloads (ELaNa-14, Ref. 42):

• RadFxSat (Radiation Effects Satellite, Fox-1B), a 1U CubeSat of AMSAT and Vanderbilt University, Nashville, TN, USA.

• EagleSat, a 1U CubeSat of ERAU (Embry-Riddle Aeronautical University), Prescott, AZ, USA.

• MakerSat-0, a 1U CubeSat of NNU (Northwest Nazarene University) and of Caldwell High School of Nampa, Idaho, USA.

• MiRaTA (Microwave Radiometer Technology Acceleration), a 3U CubeSat of MIT (Massachusetts Institute of Technology), Cambridge, MA, USA.

• Buccaneer RRM (Buccaneer Risk Mitigation Mission), a 3U CubeSat technology mission of UNSW (University of New South Wales), Canberra, Australia and DST (Defence Science and Technology) group. The goal is to calibrate JORN (Jindalee Over-the-Horizon Radar Network).

 


 

Mission status:

• All CubeSats have been deployed! P-POD 1 released EagleSat-1, RadFXSat and MakerSat-0; Buccaneer deployed from P-POD 2; and MiRaTA deployed from P-POD 3. The CubeSats all are flying solo to begin their missions. 45)

- Orbit: All CubeSats were deployed into an elliptical sun-synchronous orbit with a perigee of 450 km and an apogee at 810 km, inclination = 97.2º.

• Approximately 63 minutes after launch the solar arrays on JPSS-1 deployed and the spacecraft was operating on its own power. JPSS-1 will be renamed NOAA-20 when it reaches its final orbit. Following a three-month checkout and validation of its five advanced instruments, the satellite will become operational. 46)

- JPSS-1 will join the joint NOAA/NASA Suomi National Polar-orbiting Partnership satellite in the same orbit and provide meteorologists with observations of atmospheric temperature and moisture, clouds, sea-surface temperature, ocean color, sea ice cover, volcanic ash, and fire detection. The data will improve weather forecasting, such as predicting a hurricane's track, and will help agencies involved with post-storm recovery by visualizing storm damage and the geographic extent of power outages.

 


 

Sensor complement: (ATMS, CrIS, CERES, OMPS, VIIRS)

Contracts with instrument developers: NASA signed the final contract on June 19, 2012 with Raytheon Space and Airborne Systems of El Segundo, CA, for the VIIRS (Visible Infrared Imager Radiometer Suite) instrument. The ATMS (Advanced Technology Microwave Sounder) contract was signed with Northrop Grumman Electronic Systems of Azusa, CA, in April, 2012. NASA completed the JPSS-1 spacecraft and the OMPS (Ozone Mapping and Profiler Suite) instrument contract with Ball Aerospace in 2011. The contract to Raytheon Intelligence and Information Systems for the JPSS Ground System was also completed in 2011, as was the CrIS (Cross-track Infrared Sounder) instrument contract with ITT Exelis (Ref. 14). 47) 48)

JPSS_Auto12

Figure 14: JPSS-1 flight configuration and allocation of the instrument suite, identical to the one of NPP (image credit: NASA, NOAA) 49)

Note: Due to JPSS-1 (NPP Clone) bus limitations, the JPSS FF-1 (JPSS Free Flyer-1) mission was developed, a complementary mission to the JPSS-1 satellite. It will fly the instruments, which were originally planned for the former NPOESS satellites, but could not be accommodated on the JPSS satellites.

JPSS Free Flyer-1 will accommodate the following instruments:

• TSIS (Total Solar Irradiance Sensor)

• A-DCS (Advanced Data Collection System)

• SARSAT (Search and Rescue) instruments.

JPSS_Auto11

Figure 15: The JPSS instruments (image credit: NOAA)

 

ATMS (Advanced Technology Microwave Sounder)

ATMS, of Suomi-NPP heritage, provides sounding observations necessary to retrieve atmospheric temperature and moisture profiles for civilian operational weather forecasting, as well as continuity of these measurements for climate monitoring. In addition to temperature and moisture profiles, some of ATMS-derived products include integrated water vapor content, cloud liquid water content, precipitation rate, snow cover and sea ice concentration.

ATMS is the next generation cross-track microwave sounder that will combine the capabilities of current generation microwave temperature sounders AMSU-A, AMSU-B and AMSU-B/MHS, into a single instrument. The ATMS draws its heritage directly from AMSU-A/B, but with reduced volume, mass and power. The ATMS has 22 microwave channels to provide temperature and moisture sounding capabilities. Sounding data from CrIS and ATMS will be combined to construct atmospheric temperature profiles at 1 degree Kelvin accuracy for 1 km layers in the troposphere and moisture profiles accurate to 15% for 2 km layers. Higher (spatial, temporal and spectral) resolution and more accurate sounding data from CrIS and ATMS will support continuing advances in data assimilation systems and NWP models to improve short- to medium-range weather forecasts beyond three days. - The ATMS instrument was developed at Northrop Grumman Electronic Systems of Azusa, CA. 50)

JPSS_Auto10

Figure 16: Photo of the ATMS instrument (image credit: MIT/LL, NASA)

ATMS instrument dimensions

70 cm x 60 cm x 40 cm

Instrument mass

75 kg

Operational average power (peak)

100 W (200 W)

Data rate

30 kbit/s

Absolute calibration accuracy

0.6 K

Maximum nonlinearity

0.35 K

Frequency stability

0.5 MHz

Pointing knowledge

0.03º

NEΔT

0.3/0.5/1.0/2.0 K

Swath width

~2600 km

Table 2: Summary of key instrument parameters 51)

JPSS_AutoF

Figure 17: Functional block diagram of ATMS (image credit: NASA)

Cannel

Center
frequency (GHz)

Max. bandwidth (GHz)

Center frequency stability (MHz)

Temp. sensitivity NEΔT (K)

Calibration accuracy (K)

Static beamwidth (º)

Quasi polarization

Characterization at nadir
(reference only)

1

23.8

0.27

10

0.9

2.0

5.2

QV

Window-water
Vapor 100 mm

2

31.4

0.18

10

0.9

2.0

5.2

QV

Window-water
Vapor 500 mm

3

50.3

0.18

10

1.20

1.5

2.2

QH

Window-surface
Emissivity

4

51.76

0.40

5

0.75

1.5

2.2

QH

Window-surface
Emissivity

5

52.8

0.40

5

0.75

1.5

2.2

QH

Surface air

6

53.596 ±0.115

0.17

5

0.75

1.5

2.2

QH

4 km ~700 mb

7

54.40

0.40

5

0.75

1.5

2.2

QH

9 km ~ 400 mb

8

54.94

0.40

10

0.75

1.5

2.2

QH

11 km ~ 250 mb

9

55.50

0.33

10

0.75

1.5

2.2

QH

13 km ~ 180 mb

10

57.290344

0.33

0.5

0.75

1.5

2.2

QH

17 km ~ 90 mb

11

57.290344 ±0.217

0.078

0.5

1.20

1.5

2.2

QH

19 km ~ 50 mb

12

57.290344 ±0.3222 ±0.048

0.036

1.2

1.20

1.5

2.2

QH

25 km ~ 25 mb

13

57.290344 ±0.3222
±0.022

0.016

1.6

1.50

1.5

2.2

QH

29 km ~ 10 mb

14

57.290344 ±0.3222
±0.010

0.008

0.5

2.40

1.5

2.2

QH

32 km ~ 6 mb

15

57.290344 ±0.3222
±0.0045

0.003

0.5

3.60

1.5

2.2

QH

37 km ~ 3 mb

16

87-91

2.0

200

0.5

2.0

2.2

QV

Window
H2O 150 mm

17

166.31

2.0

200

0.6

2.0

1.1

QH

H2O 18 mm

18

183.31±7.0

2.0

100

0.8

2.0

1.1

QH

H2O 8 mm

19

183.31±4.5

2.0

100

0.8

2.0

1.1

QH

H2O 4.5 mm

20

183.31±3.0

1.0

50

0.8

2.0

1.1

QH

H2O 2.5 mm

21

183.31±1.8

1.0

50

0.8

2.0

1.1

QH

H2O 1.2 mm

22

183.31±1.0

0.5

30

0.9

2.0

1.1

QH

H2O 0.5 mm

Table 3: Channel characteristics of ATMS

Instrument calibration: The instrument includes on-board calibration sources viewed by the reflectors during each scan cycle. The calibration of the ATMS is a so-called through-the-aperture type, two-point calibration subsystem. The warm reference point is a microwave blackbody target whose temperature is monitored. In addition, cold space is viewed during each scan cycle. Both calibrations provide for the highly accurate microwave sounding measurements required by the operational and science applications of ATMS data.

There are three antenna beamwidths. The temperature sounding channels are 2.2º (Nyquist-sampling in both along-scan & down-track directions) while the humidity channels are 1.1º. Channels 1 and 2 have a larger beam width of 5.2º. This is due to the limited volume available on the spacecraft for ATMS.

The ATMS post-launch calibration/validation:

• Tasks within the phases can be categorized:

- Sensor evaluation: interference, performance evaluation, etc.

- TDR/SDR verification: geolocation, accuracy, etc.

- SDR algorithm tunable parameters: bias correction, space view sector, etc.

• Activation phase: Sensor is turned on and a sensor functional evaluation is performed; ATMS is collecting science data

• Checkout phase: Performance evaluation and RFI evaluations

• Intensive Cal/Val: Verification of SDR attributes such as geolocation, resampling, brightness temperature accuracy (simultaneous nadir overpass, double difference, radiosondes/NWP simulations, aircraft verification campaigns), and satellite maneuvers.

JPSS_AutoE

Figure 18: Atmospheric transmission at microwave wavelengths (image credit: MIT/LL)

ATMS provides 3 EDRs (Environmental Data Records) with CrIS:

• Atmospheric vertical moisture profile

• Atmospheric vertical temperature profile

• Pressure (surface/profile).

• Both ATMS and CrIS are critical for forecasting – at all scales – particularly for the 3-7 day weather forecast.

• ATMS provides rain and snow rates, ice and snow cover information, and snow water equivalent.

• CrIS provides soundings for real-time instability assessments, and trace gases for monitoring greenhouse gases and their transport.

• Both sensors have low noise and excellent long-term stability that will enable more accurate climate change monitoring.

• The sounding products (NUCAPS and MIRS) are available through the NOAA operational product generation system for global data and the CSPP Direct Readout Software.

Table 4: Summary of ATMS and CrIS applications 52)

NUCAPS (NOAA Unique CrIS/ATMS Processing System) was developed to generate (1) spectrally and spatially thinned radiances, (2) retrieved products such as profiles of temperature, moisture, trace gases and cloud-cleared radiances, and (3) global validation products such as radiosonde matchups and gridded radiances and profiles.

These products are derived from the CrIS (Cross-track Infrared Sounder) and ATMS (Advanced Technology Microwave Sounder) currently onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite and later will be available from the Joint Polar Satellite System (JPSS-1 and JPSS-2). 53)

 

CrIS (Cross-track Infrared Sounder)

CrIS is the first in a series of advanced operational sounders that will provide more accurate, detailed atmospheric temperature and moisture observations for weather and climate applications. This high-spectral resolution infrared instrument will take 3-D images of atmospheric temperatures, water vapor and trace gases. It will provide over 1,000 infrared spectral channels at an improved horizontal spatial resolution and measure temperature profiles with keen vertical resolution to an accuracy approaching 1 K (the absolute temperature scale). This information will help significantly to improve climate prediction, including both short-term weather "nowcasting" and longer-term forecasting. It will also provide a vital tool for NOAA to take the pulse of the planet continuously and assist in understanding major climate shifts. The CrIS instrument is developed by ITT Exelis, Fort Wayne, Indiana.

JPSS_AutoD

Figure 19: Photo of the CrIS instrument (image credit: NOAA) 54)

CrIS, of HIRS/4 (POES) and AIRS (Aqua) heritage, is a high-spectral and high-spatial resolution infrared sounder for atmospheric profiling applications. The overall objective is to perform daily measurements of Earth's upwelling infrared radiation to determine the vertical atmospheric distribution (surface to the top of the atmosphere) of temperature (profiles to better than 1 K accuracy in the lower troposphere and lesser accuracy at higher altitudes), moisture (profiles to better than 20-35% accuracy depending on altitude) and pressure (profiles to better than 1.0% accuracy ) with an associated 1.0 km vertical layer resolution. The Michelson interferometer sounder has 1305 spectral channels, it covers a spectral range of 650-2550 cm-1 (or 3.9 to 15.4 µm), with a spectral resolution of 0.6525 cm-1 (LWIR), and a ground spatial resolution (IFOV) of 14.0 km (from an orbital altitude of 833 km). Each scan (with an 8-second repeat interval) includes views of the internal calibration target (warm calibration point), and a deep space view (cold calibration point). The overall instrument data rate is <1.5Mbit/s. Only photovoltaic detectors are used in the CrIS instrument. The detectors are cooled to approximately 81K using a 4-stage passive cooler with no moving parts. They have a low-risk heritage design of over 50 space units. The IFOVs are arranged in a 3 x 3 array. The swath width is 2200 km (FOV of ±50º), with 30 Earth-scene views.

The CrIS optical system was designed to provide an optimum combination of optical performance and compact packaging. Its key subsystems include a step and settle two-axis scene selection module with image motion compensation capability, a full-aperture internal calibration source, a large-aperture Michelson interferometer, a three-element all reflective telescope, a cooled aft optics module, a multiple-stage passive cooler, and an attached electronics assembly. The interferometer uses a flat-mirror Michelson configuration equipped with a dynamic alignment system to minimize misalignments within the interferometer and has a maximum optical path difference of ±0.8 cm. 55)

The "unapodized spectral resolution" requirement is defined as I/(2L), where L is the maximum optical path difference from ZOND (Zero Path Difference) to MPD (Maximum optical Path Difference). The on-axis unapodized spectral resolution for each spectral band shall be ≤to the values given in Table 5. Since L determines the unapodized spectral resolution, the nominal value for L is also given in the table. 56)

Requirement/Spectral band

LWIR (TIR)

MWIR

SWIR

Channel center wavenumber range

650-1095 cm-1
15.38-9.14 µm

1210-1750 cm-1
8.26-5.71 µm

2155-2550 cm-1
4.64-3.92 µm

No of channels

713

433

159

Unapodized spectral resolution, nominal L

≤ 0.625, 0.8 cm

≤ 1.25, 0.4 cm

≤ 2.5, 0.2 cm

Absolute spectral uncertainty

< 10 (5) PPM

< 10 (5) PPM

< 10 (5) PPM

Characterize self-apodized ILS for each spectral bin

Yes

Yes

Yes

ILS (Instrument Line Shape) shape uncertainty

< 1.5% FWHM

< 1.5% FWHM

< 1.5% FWHM

ILS shape stability over 30 days

< 1% FWHM

< 1% FWHM

< 1% FWHM

Table 5: Spectral requirements of the CrIS instrument

Instrument: The CrIS instrument consists of 6 modular assemblies: optical bench, scanning telescope, interferometer, PV focal plane arrays, 4-stage passive cooler, and electronics. The optical bench provides a stable structure for mounting all of the other assemblies. The scanning telescope scans the Earth views, the ICT (Internal Calibration Target), and deep space, and focuses the IR energy into the interferometer. The interferometer sequentially "breaks" the IR energy into the spectral bands, much like the "rainbow" from a DVD surface. The PV detectors sense the sequenced IR energy (from the interferometer), and provide an electrical signal corresponding to the incoming IR energy. The 4-stage cooler is used to cool the detectors, and hence reduce any spurious detector noise. The electronics assembly controls the instrument. It also conditions and formats the telescope scan and detector signals for output to the spacecraft. 57) 58)

• 8 cm clear aperture

• A collimator is used to perform the spatial and spectral characterizations

• 4-stage split-patch passive cooler (81 K for LWIR patch temperature, 98 K for MWIR/SWIR patch)

• High-performance PV (photovoltaic) detectors

• 3 x 3 arrays (14 km IFOVs)

• Three spectral bands (SWIR, MWIR, TIR), co-registered so that the FOVs of each band see the radiance from the same region of the Earth's atmosphere

• All-reflective telescope

• Proven Bomem plane-mirror Michelson interferometer with dynamic alignment

• Deep-cavity internal calibration target based on MOPITT design

• Two-axis scene selection module with image motion compensation

• A modular design (allowing for future addition of an active cooler and >3 x 3 arrays

The flight configuration for the CrIS DPM (Detector Preamplifier Module) consists of three spectrally separate (SWIR, MWIR and LWIR) FPAAs (Focal Plane Array Assemblies), three (SWIR, MWIR and LWIR) signal flex cable assemblies, a warm signal flex cable/vacuum bulk head assembly, and the DPM warm electronics CCAs (Circuit Card Assemblies). The FPAAs are cooled to cryogenic temperature (98 K SWIR, MWIR, 81 K for LWIR) by the detector cooler module. The cryogenic portions of the DPM (FPAAs, and signal flex cable assemblies) mate to the ambient temperature portions of the DPM (warm signal flex cable assembly and the ambient temperature portions of the transimpedance amplifier, mounted within the CCAs) through the vacuum bulk head assembly mounted on the detector cooler assembly housing. 59)

Spectral bands
- SWIR
- MWIR
- TIR (also known as LWIR)

Total of 1305 channels
(2155 - 2550 cm-1) or 4.64 - 3.92 µm, 159 channels
(1210 - 1750 cm-1) or 8.62 - 5.7 µm, 433 channels
(650 - 1095 cm-1) or 15.3 - 9.1 µm, 713 channels

Spectral resolution:
- SWIR
- MWIR
- TIR


(<2.5 cm-1) or 5.4 nm (at 4.64 µm) to 38.4 nm (at 3.92 µm)
(<1.25 cm-1) or 92.8 nm (at 8.62 µm) to 40.6 nm (at 5.7 µm)
(<0.625 cm-1) or 146 nm (at 15.3 µm) to 51.7 nm (at 9.1 µm)

Band-to-band co-registration
IFOV motion (jitter)
Mapping accuracy

< 1.4%
< 50 µrad/axis
< 1.5 km

Number of IFOVs

3 x 3 at 14 km diameter for each band

IFOV diameter

14 km

Absolute radiometric uncertainty

<0.8% (SWIR), <0.6% (MWIR), <0.45% (TIR)

Radiometric stability

<0.65% (SWIR, <0.5% (MWIR), <0.4% (TIR)

Instrument size

71 cm x 88 cm x 94 cm

Instrument mass, average power, data rate

152 kg, 124 W, 1.5 Mbit/s (average), 1.5 Mbit/s (max)

Table 6: Key performance characteristics of CrIS

CrIS calibration: The calibration of the interferometer is accomplished with both LASER wavelength calibration, and also with a Neon bulb spectral calibration. The ICT (Internal Calibration Target) consists of a highly emissive, deep-cavity blackbody, utilizing a flight-proven, MOPITT (Measurement of Pollution in the Troposphere)-heritage design. Temperature knowledge of the ICT is better than 80mK. A passive vibration isolation system is included to allow instrument operation in a 50mG environment. The instrument optics are thermally decoupled from both the structure and the instrument electronics. The overall instrument design is modular, which allows for parallel assembly and rapid instrument integration.

The primary data product of the CrIS instrument are interferograms collected from 27 infrared detectors that cover 3 IR bands and 9 FOVs. 60)

Data of CrIS will be combined in particular with those of ATMS to construct atmospheric temperature profiles at 1 K accuracy for 1 km layers in the troposphere and moisture profiles accurate to 15% for 2 km layers. 61)

 

CERES (Clouds and the Earth's Radiant Energy System)

The CERES measurements seek to develop and improve weather forecast and climate models prediction. CERES will help provide measurements of the space and time distribution of the Earth's Radiation Budget (ERB) components, further developing a quantitative understanding of the links between the ERB and the properties of the atmosphere and surface that define the budget. The observations from CERES are essential to understanding the effect of clouds on the energy balance (energy coming in from the sun and radiating out from the earth), which is one of the largest sources of uncertainty in our modeling of the climate. NASA/LaRC is procuring the CERES instrumentation.

Background: The ERB measurements provided by the CERES instruments are key elements in the production of ERB Climate Data Records; these records that have been produced on a continuous basis for more than 20 years, including measurements from the ERBE (Earth Radiation Budget Experiment) prior to CERES. Maintaining the continuity of these measurements and the ERB records are part of an overarching NOAA program objective to sustain continuity and enhance Earth observation analysis, forecasting and climate monitoring capabilities from global polar-orbiting observations.

The level of measurement accuracy necessary to assess climate change and understand the interactions of natural and anthropogenic effects occurring on a decadal time scale requires that instruments making these measurements overlap on orbit for sufficient periods to achieve transfer of calibration from one instrument to the next. The CERES instruments currently operating on the EOS (Earth Observing System) Terra and Aqua missions have provided over 10 years of accurate measurements of the solar reflected and Earth emitted energy.

The CERES FM5 instrument is currently flown on the Suomi-NPP mission while the CERES FM6 instrument is planned for launch on the JPSS-1 mission. These missions should provide continuity of ERB measurements into the next decade.

JPSS_AutoC

Figure 20: Earth's energy budget describes the balance between the radiant energy that reaches Earth from the sun and the energy that flows from Earth back out to space (image credit: NASA)

CERES Flight Model (FM)

Mission

Launch

Comment

PFM (Proto-Flight Model)

TRMM (Tropical Rainfall Measuring Mission)

Nov. 27, 1997

PFM performed for 8 months, then PFM was turned off from Aug. 1998 to June 2002, when it was on to provide a comparison with CERES on Aqua

FM-1, -2

Terra (2 CERES instruments)

Dec. 19, 1999

SSO at 705 km altitude

FM-3, -4

Aqua (2 CERES instruments)

May 04, 2002

SSO at 705 km altitude

FM-5

Suomi-NPP

Oct. 28, 2011

SSO at 824 km altitude

FM-6

JPSS (Joint Polar Satellite System)-1

Planned 2017

SSO at 833 km altitude

CBERS Follow-on

JPSS (Joint Polar Satellite System)-2

Planned 2022

 

Table 7: CBERS instruments on NASA missions 62)

JPSS_AutoB

Figure 21: Overview of past, current and future missions with corresponding CERES instrument FM generations (image credit: NASA/LaRC) 63)

CERES instrument measures the reflected shortwave (SW) and Earth emitted radiances. The objectives are to continue a consistent database of accurately known fields of Earth's reflected solar and Earth's emitted thermal radiation. CERES satisfies four JPSS EDRs, in combination with other instruments. 64) 65) 66) 67) 68)

- Net solar radiation at TOA (Top of the Atmosphere)

- Downward longwave radiation at the surface

- Downward shortwave radiation at the surface

- Outgoing longwave radiation at TOA.

CERES instrument: The CERES instrument consists of three major subassemblies: 1) Cassegrain telescope, 2) baffle for stray light, and 3) detector assembly, consisting of an active and compensating element. Radiation enters the unit through the baffle, passes through the telescope and is imaged onto the IR detector. Uncooled infrared detection is employed.

JPSS_AutoA

Figure 22: Norman Loeb, principal investigator of NASA's Radiation Budget Science Project, is pictured with a CERES model, which studies the clouds and monitor Earth's "energy budget" (image credit: NASA, David C. Bowman) 69)

JPSS_Auto9

Figure 23: Cross section of the CERES telescope (image credit: NASA/LaRC) 70)

A CERES instrument consists of 2 identical scanners: total mass of 114 kg , power = 100 W (average, 2 instruments), data rate = 20 kbit/s, duty cycle = 100%, thermal control by heaters and radiators, pointing knowledge = 180 arcsec. The design life is six years. CERES measures longwave (LW) and shortwave (SW) infrared radiation using thermistor bolometers to determine the Earth's radiation budget. There are three spectral channels in each radiometer:

- VNIR+SWIR: 0.3 - 5.0 µm (also referred to as SW channel); measurement of reflected sunlight to an accuracy of 1%.

- Atmospheric window: 8.0 - 12.0 µm (also referred to as LW channel); measurement of Earth-emitted radiation, this includes coverage of water vapor

-Total channel radiance in the spectral range of 0.35 - 125 µm;. reflected or emitted infrared radiation of the Earth-atmosphere system, measurement accuracy of 0.3%.

Limb-to-limb scanning with a nadir IFOV (Instantaneous Field of View) of 14 mrad, FOV = ±78º cross-track, 360º azimuth. Spatial resolution = 10-20 km at nadir. Each channel consists of a precision thermistor-bolometer detector located in a Cassegrain telescope.

Instrument calibration: CERES is a very precisely calibrated radiometer. The instrument is measuring emitted and reflected radiative energy from the surface of the Earth and the atmosphere. A variety of independent methods are used to verify calibration: 71)

• Internal calibration sources (blackbody, lamps)

• MAM (Mirror Attenuator Mosaic) solar diffuser plate. MAM is used to define in-orbit shifts or drifts in the sensor responses. The shortwave and total sensors are calibrated using the solar radiances reflected from the MAM's. Each MAM consists of baffle-solar diffuser plate systems, which guide incoming solar radiances into the instrument FOV of the shortwave and total sensor units.

• 3-channel deep convective cloud test

- Use night-time 8-12 µm window to predict longwave radiation (LW): cloud < 205 K

- Total - SW = LW vs Window predicted LW in daytime for same clouds <205 K temperatures

• 3-channel day/night tropical ocean test

• Instrument calibration:

- Rotate scan plane to align scanning instruments TRMM, Terra during orbital crossings (Haeffelin: reached 0.1% LW, window, 0.5% SW 95% configuration in 6 weeks of orbital crossings of Terra and TRMM)

- FM-1 and FM-2 instruments on Terra at nadir

Instrument heritage

Earth Radiation Budget Experiment (ERBE)

Prime contractor

Northrop Grumman Aerospace Systems

NASA center responsible

LaRC (Langley Research Center)

Three channels in each radiometer

Total radiance (0.3 to 200 µm); Shortwave (0.3 to 5 µm); Window (5 to 35 µm)

Swath

Limb to limb

Spatial resolution

24 km at nadir

Instrument mass, duty cycle

~54 kg/scanner, 100%

Instrument power

55 W (average) per scanner, 104 W (peak: biaxial mode) both scanners

Data rate

10.52 kbit/scanner (average)

Thermal control

Use of heaters and radiators

Thermal operating range

38±0.1ºC (detectors)

FOV (Field of View)

±78º cross-track, 360º azimuth

IFOV

14 mrad

Instrument pointing requirements (3σ)
Control
Knowledge
Stability


720 arcsec
180 arcsec
79 arcsec/6.6 sec

Instrument size

60 cm x 60 cm x 57.6 cm/unit

Table 8: CERES instrument parameters

JPSS_Auto8

Figure 24: Illustration of the CERES scanning radiometer (image credit: NASA/LaRC)

Data products: CERES provides global radiative flux and cloud property datasets. The temporal resolutions range from Level 2 instantaneous measurements to Level 3 hourly, daily, and monthly averages. The spatial resolutions range from Level 2 satellite field-of-view footprint measurements to Level 3 gridded regional, zonal, and global averages.

Global CERES data allow scientists to validate models that calculate the effect of clouds in driving planetary heating or cooling. CERES data also help improve seasonal climate forecasts, including cloud and radiative aspects of large-scale climate events like El Niño and La Niña.

The CERES science team also uses high spatial resolution visible/infrared imager data to determine cloud properties including the amount, height, thickness, particle size, and phase of clouds using simultaneous measurements by other instruments, such as VIIRS (Visible Infrared Imaging Radiometer Suite). These measurements are critical for understanding cloud-radiation climate change and improving the prediction of global warming using climate models.

Data from CERES can also be used for assessing the radiative effects and climatic impact of natural disasters like volcanic eruptions, major floods, and droughts. The long-term data record from CERES will provide a basis for scientific understanding of cloud and climate feedback that determines climate variations and trends.

JPSS_Auto7

Figure 25: This map of India and the Middle East and Asia shows how much outgoing longwave radiation left Earth's atmosphere between May 15-27, 2015, while the region was experiencing a heatwave. Measurements for this image were made by the CERES instrument on NASA's Terra satellite. The image was created using the CERES SSF (Single Scanner Footprint) 1deg data product (image credit: NASA's CERES Science Team)

 

OMPS (Ozone Mapping and Profiler Suite)

Ozone in the atmosphere keeps the Sun's ultraviolet radiation from striking the Earth. The OMPS will measure the concentration of ozone in the atmosphere, providing information on how ozone concentration varies with altitude. Data from OMPS will continue three decades of climate measurements of this important parameter used in global climate models. The OMPS measurements also fulfill the U.S. treaty obligation to monitor global ozone concentrations with no gaps in coverage. OMPS is comprised of two sensors: (1) a nadir sensor, and (2) a limb sensor. Measurements from the nadir sensor are used to generate total column ozone measurements, while measurements from the limb sensor generate ozone profiles of the along-track limb scattered solar radiance.

OMPS is a limb- and nadir-viewing UV hyperspectral imaging spectrometer, designed and developed at BATC (Ball Aerospace & Technologies Corp.), Boulder, CO. The objective is to measure the total amount of ozone in the atmosphere and the ozone concentration variation with altitude. OMPS is of SBUV/2, TOMS and GOME heritage. Also, the OMPS limb-sounding concept/technology was already tested with ISIR (Infrared Spectral Imaging Radiometer) flown on Shuttle flight STS-85 (Aug. 7-19, 1997) and with SOLSE/LORE flown on STS-87 (Nov 19 - Dec. 5, 1997). The vertical resolution requirement demands an instrument design to include a limb-viewing sensor in addition to a heritage-based nadir-viewing sensor. 72) 73) 74) 75)

OMPS on JPSS consists of three spectrometers:

• Nadir total column spectrometer covers a 50 km x 2800 km cross-track swath

• Nadir Profile Spectrometer provides performance over (250 km x 250 km) cell

• Limb sensor provides 1 km vertical sampling along three slits enabling ozone profile retrieval (Not provided on JPSS-1) 76)

Basic requirement

Measurement parameter

Requirement

1) Global daily maps of the amount of ozone
in the vertical column of the atmosphere

Horizontal cell size
Range
Accuracy
Precision
Long-term stability

50 km @ nadir
50-650 Dobson Units (DU)
15 DU or better
3 DU+0.5% total ozone or better
1% over 7 years or better

2) Provision of volumetric ozone concentration
profiles in specified segments of a vertical column
of the atmosphere with a 4-day revisit time

Vertical cell size
Horizontal cell size
Vertical coverage
Range
Accuracy

Precision
Long-term stability

3 km
250 km
Tropopause height to 60 km
0.1 - 15 ppmv
Greater of (20%, 0.1 ppmv) below 15 km
Greater of (10%, 0.1 ppmv) above 15 km
3%, 15-50 km; 10% TH-15 and 50-60 km
2%

Table 9: Overall mission requirements for OMPS ozone observations 77)

The OMPS instrument design features two coregistered spectrometers in the OMPS nadir sensor. The grating spectrometer and focal plane for total column measurements provide 0.45 nm spectral sampling across the wavelength range of 300 to 380 nm. The IFOV for the nadir cell of the total column measurement is 49.5 km cross track with an along-track reporting interval of 50 km. The total FOV cross track is 110º to provide daily global coverage.

Nadir-viewing instrument: The nadir sensor wide-field telescope feeds two separate spectrometers, a) for total column observations (mapper) and b) for nadir profiling observations. The total column spectrometer (300-380 nm spectral range, resolution of 0.45 nm) has a 2800 km cross-track swath (FOV = 110º and an along-track slit width of 0.27º) divided into 35 IFOVs of nearly equal angular extent. The CCD pixel measurements from its cross-track spatial dimension are summed into 35 bins. The summed bins subtend 3.35º (50 km) at nadir and 2.84º at ±55º. The along-track resolution is 50 km at nadir due to spacecraft motion during the 7.6 second reporting period. Measurements from this spectrometer are used to generate total column ozone data with a resolution of about 50 km x 50 km at nadir.

The nadir profile spectrometer (250-310 nm) has a 250 km cross-track swath corresponding to a single cell (cross-track FOV = 16.6º, and 0.26º along-track slit width). Co-registration with the total column spectrometer provides the total ozone, surface and cloud cover information needed for nadir profile retrievals. All of the cross-track pixels are binned spatially to form a single cell of 250 km x 250 km. Some instrument parameters are: 78)

- The telescope is a three mirror, near telecentric, off-axis design. The FOV is allowed to curve backward (concave in the anti-ram direction) by 8.5º at 55º cross-track in order to maintain straight entrance slits for the spectrometers. The mirrors are made with a glass which matches the thermal expansion of Titanium, are coated with an enhanced aluminum, and have an rms surface roughness of < 15Å.

- Each of the 2 spectrometers has a CCD detector array, a split column frame transfer CCD 340 x 740 (column x row) operated in a backside illuminated configuration. The pixel pitch is 20 µm in the column (spectral) dimension and 25 µm in the row (spatial) dimension and every pixel in both the active and storage regions contains a lateral overflow antiblooming structure integrated into a 4-phase CCD architecture.

- Both spectrometers sample the spectrum at 0.42 nm, 1 nm FWHM end-to-end resolution

- Electronics: a) CCD preamplifier electronics in sensor housing, b) main electronics box performs A/D conversion and on-orbit pixel correction

- The OMPS nadir instrument has a mass of 12.5 kg and a size of 31 cm x 32 cm x 20 cm.

Polarization compensators are used to reduce polarization sensitivity for both Nadir instruments. Long-term calibration stability is monitored and corrected by periodic solar observations using a "Working" and "Reference" reflective diffuser system (similar to that successfully deployed on the TOMS sensors).

JPSS_Auto6

Figure 26: Photo of the OMPS instrument (image credit: BATC) 79)

 

Parameter

Nadir Total Column (Nadir Mapper)

Nadir Profile (Nadir Profiler)

Spectral range

300-380 nm

250-310 nm

Spectral radiance range [photons/(s cm2 sr nm)]

9 el 3 (380 nm)
8 el 1 (308 nm)

2 el 3 (310 nm)
1.5 el 8 (252 nm)

Minimum SNR

1000

35 (252 nm)
400 (310 nm)

Integration time

7.6 s

38 s

Spectral resolution

1 nm FWHM
2.4 samples/FWHM

1 nm FWHM
2.4 samples/FWHM

FOV

110º x 1.0º (cross-track x along-track)

16.6º x 0.26º

Cell size

49 km x 50 km (nadir)

250 km x 250 km (single cell at nadir)

Revisit time

daily

 

Swath

2800 km

250 km

Table 10: Performance parameters of the OMPS spectrometers

 

VIIRS (Visible/Infrared Imager Radiometer Suite)

VIIRS will combine the radiometric accuracy of the AVHRR-3 (Advanced Very High Resolution Radiometer), which is currently flown on the NOAA polar orbiters with the high spatial resolution (0.56 km) of the OLS (Operational Linescan System) flown on DMSP. VIIRS will provide imagery of clouds under sunlit conditions in about a dozen bands, and will also provide coverage in a number of infrared bands for night and day cloud imaging applications.

VIIRS will have multi-band imaging capabilities to support the acquisition of high-resolution atmospheric imagery and generation of a variety of applied products, including visible and infrared imaging of hurricanes and detection of fires, smoke and atmospheric aerosols. VIIRS will also provide capabilities to produce higher-resolution and more accurate measurements of sea surface temperature than currently available from the heritage AVHRR-3 instrument on POES, as well as provide an operational capability for ocean-color observations and a variety of derived ocean-color products. The VIIRS instrument is developed by the Raytheon Company, El Segundo, CA. 80)

VIIRS is an advanced, modular, multi-channel imager and radiometer (of OLS, AVHRR-3, MODIS, and SeaWiFS heritage) with the objective to provide global observations (moderate spatial resolution) of land, ocean, and atmosphere parameters at high temporal resolution (daily). 81) 82) 83) 84) 85) 86) 87) 88) 89)

VIIRS is a multispectral (22-band) opto-mechanical radiometer, employing a cross-track rotating telescope fore-optics design (operating on the whiskbroom scanner principle), to cover a wide swath. The rotating telescope assembly (RTA of 20 cm diameter) concept of SeaWiFS heritage allows a low straylight performance. An observation scene is imaged onto three focal planes, separating the VNIR, SWIR/MWIR, and TIR energy - covering a spectral range of 0.4 - 12.5 µm. The VNIR FPA (Focal Plane Array) has nine spectral bands, the SWIR/MWIR FPA has eight spectral bands, and the TIR FPA four spectral bands. The integral DNB (Day Night Band) capability provides a very large dynamic range low-light capability in all VIIRS orbits. The detector line arrays [16 detectors in each array for the SWIR/MWIR and TIR bands, 32 detectors in the array for the VNIR and DNB (Pan) bands] of the whiskbroom scanner are oriented in the along-track direction. This arrangement provides a parallel coverage of 11.87 km along-track in one scan sweep (cross-track direction). The wide along-track coverage permits sufficient integration time for all cells in each scan sweep. One cross-track scan period of RTA is 1.786 s in length. The data quantization is 12 bits (14 bit A/C converters for lower noise).

Typical data products (types) of VIIRS include atmospheric, clouds, earth radiation budget, clear-air land/water surfaces, sea surface temperature, ocean color, and low-light visible imagery. A swath width of 3000 km is provided (corresponding to FOV=±55.84º) with a spatial resolution for imagery related products of no worse than 0.4 km to 0.8 km (nadir to edge-of-scan). The radiometric bands provide a resolution about twice in size to the imagery bands. Note: Most derived data products will be produced at somewhat coarser resolutions by aggregation of on-board data.

JPSS_Auto5

Figure 27: Photo of the VIIRS instrument (image credit: NASA, Raytheon, Ref. 86)

The VIIRS instrument design employs an all-reflective optics assembly taking advantage of recent optics advances: a) single 4 mirror imager, b) 2 dichroics and 1 fold, c) aluminum DPT-bolt together technology (DPT = Diamond Point Turning). A rotating off-axis and afocal TMA (Three Mirror Anastigmatic) telescope assembly is employed [Note: The telescope rotates 360º, thus scanning the Earth scene, and then internal calibration targets.]. The aperture of the imaging optics is 18.4 cm in diameter, the focal length is 114 cm (f/5.97). The VIIRS optical train consists of the fore optics (TMA), the aft optics [an all-reflective FMA (Four Mirror Anastigmat) imager], and the back-end optics, which include microlenses for the cooled focal planes.

A total of 22 spectral bands have been selected as defined in Table 11. VIIRS features band-to-band registration for all bands (optical alignment of all FPAs). A total of three focal planes and four FPAs (Focal Plane Arrays) cover the spectral range of the instrument, one FPA for DNB (Day-Night Band), one for VNIR, SWIR/MWIR, and TIR. The DNB spectral range of 0.5-0.9 µm CCD detector features four light-sensitive areas (3 with TDI, one without) and near-objective sample spacing.

The VNIR FPA employs a PIN (Positive Insulator Negative) diode array/ROIC (Readout Integrated Circuit) design collocated with the DNB monolithic CCD. All detectors in the SWIR/MWIR/TIR regions employ photovoltaic (PV) detectors with an element spacing of 12 µm. A ROIC (Readout Integrated Circuit) at each FPA provides improved noise levels and built-in offset correction. A cryogenic module (three-stage radiative cooler) provides FPA cooling.

A single-board instrument computer provides a processing capability including data aggregation, data compression [lossless (2:1 Rice compression) and lossy (JPEG) algorithms are used], and CCSDS data formatting.

Calibration is performed with three on-board calibrators: a) a solar diffuser (SD) provides full aperture solar calibration, b) a solar diffuser stability monitor, and c) a blackbody. Instrument calibration of VIIRS is based on that of the MODIS instrument: 90) 91) 92)

• VNIR: 1) View of a spectralon plate at the poles every few days; 2) Deep space view

• SWIR/MWIR/TIR: 1) View of blackbody every scan; 2) Deep space view

JPSS_Auto4

Figure 28: Major subsystems/components of VIIRS (functional block diagram)

JPSS_Auto3

Figure 29: Schematic of VIIRS rotating TMA (Three Mirror Anastigmatic) telescope assembly

The VIIRS instrument has a mass of 252 kg, power of ~ 191 W (operational average), and a size of 134 cm x 141 cm x 85 cm. The data rate is 10.5 Mbit/s (high rate mode) and 8 Mbit/s (average rate) mode with 10:1 JPEG compression). The VIIRS instrument features a SBC (Single Board Computer) for all instrument operations and control; it communicates with the S/C via an IEEE 1394a cable interface.

Some operational features of VIIRS:

• All functions are individually commandable

• Macro commands (stored sequences, all macros are reprogrammable) simplify the commanding and reduce the uplink data

• Time-tagged commands allow delayed execution (provides for 30 days autonomous operations)

• The swath widths and locations are individually programmable by band (improved resolution views of selected target near nadir)

• Diagnostic mode features improved versatility.

Band

Center wave (µm)

Bandwidth (µm)

Comment (driving EDR observation requirements)

VNIR (Visible Near-Infrared) spectral region, use of Si detectors in FPA

DNB

0.70

0.40

Day Night Band, broad bandwidth maximizes signal (essential nighttime reflected band)

M1

0.412

0.02

Ocean color, suspended matter, net heat flux, mass loading

M2

0.445

0.018

Ocean color, suspended matter, net heat flux, mass loading

M3

0.488

0.02

Ocean color EVI, surface type, aerosols suspended matter, net heat flux, mass loading

M4

0.555

0.02

Ocean color, surface type, suspended matter, net heat flux, mass loading

I1

0.640

0.05

Imagery, NDVI, cloud mask/cover, cloud optical properties, surface type, albedo, snow/ice, soil moisture

M5

0.672

0.02

Ocean color, aerosols, suspended matter, net heat flux, littoral transport, mass loading

M6

0.746

0.015

Ocean color, mass loading

I2

0.865

0.039

Imagery NDVI (NDVI heritage band), snow/ice, surface type, albedo

M7

0.865

0.039

Ocean color, cloud mask/cover, aerosols, soil moisture, net heat flux, mass loading

SWIR (Short-Wave Infrared) spectral region, use of PV (Photovoltaic) HgCdTe detectors

M8

1.24

0.02

Cloud optical properties (essential over snow/ice), active fires

M9

1.378

0.015

Cloud mask/cover (thin cirrus detection), aerosols, net heat flux

M10

1.61

0.06

Aerosols, cloud optical properties, cloud mask/cover (cloud/snow detection), active fires, soil moisture, net heat flux

I3

1.61

0.06

Imagery snow/ice (cloud/snow differentiation), surface type, albedo

M11

2.25

0.05

Aerosols (optimal aerosol optical thickness over land), cloud optical properties, surface type, active fires, net heat flux

MWIR (Mid-Wave Infrared) spectral region, use of PV (Photovoltaic) HgCdTe detectors

I4

3.74

0.38

Imagery (identification of low and dark stratus), active fires

M12

3.70

0.18

SST (Sea Surface Temperature), cloud mask/cover, cloud EDRs, surface type, land/ice surface temperature, aerosols

M13

4.05

0.155

SST (essential for skin SST in tropics and during daytime), land surface temperature, active fires, precipitable water

TIR (Thermal Infrared) spectral region, use of PV (Photovoltaic) HgCdTe detectors

M14

8.55

0.3

Cloud mask/cover (pivotal for cloud phase detection at night, cloud optical properties

M15

10.763

1.00

SST, cloud EDRs and SDRs (Science Data Records), land/ice surface temperature, surface type

I5

11.450

1.9

Imagery (nighttime imagery band)

M16

12.013

0.95

SST, cloud mask/cover, land/ice surface temperature, surface type

Table 11: Definition of VIIRS spectral bands

DNB (Day-Night Band) FPA

VNIR FPA

SWIR/MWIR FPA

TIR FPA

One broadband

9 bands

8 bands

4 bands, 1 with TDI

CCD detector

Si PIN diodes

PV HgCdTe detector

PV HgCdTe detector

FPIE (Focal Plane Interface Electronics)

ROIC (Readout Integrated Circuit)

ROIC

ROIC

Filter/Bezel

Filter/Bezel

Si micro-lens array

Ge micro-lens array

Tops = 253 K

Tops = ambient

Filter/Bezel

Filter/Bezel

 

 

Tops = 80 K

Tops = 80 K

Table 12: Overview of the FPA design of VIIRS

Some key EDRs of VIIRS: 93)

• SST (Sea Surface Temperature). VIIRS is capable to provide a nadir resolution of 750 m (by aggregating detectors 3:l in-track near nadir, 2:l in-track aggregation out to a 2,000 swath, and 1:1 out to 3,000 km) to simultaneously optimize spatial resolution and noise performance. - The SST solution combines the traditional long-wave infrared (LWIR) split window with a second split window in the mid-wave infrared (MWIR) for a globally robust SST algorithm. The MWIR split window has a higher transmissivity than the traditional LWIR split window for improved atmospheric correction. The low-noise design is operable day and night with 0.25 K precision, and 0.35 K total measurement uncertainty (rms error).

• Imagery and cloud detection/typing. The imagery solution provided on VIIRS includes six high-resolution bands and an additional 16 moderate-resolution bands. One of these, a reflective panchromatic band (DNB), is operable in low-light conditions down to a quarter moon. A swath with of 3000 km is provided.

• Soil moisture. A VIIRS/CMIS data fusion solution was derived. The approach combines the fine spatial resolution of VIIRS with traditional coarser-resolution microwave-derived soil moisture retrievals to achieve excellent results over both open and partially vegetated scenes. The estimation procedure involves two steps: 1) CMIS estimates soil moisture at coarse spatial resolution. This involves inversion of dual-polarized microwave brightness temperatures. 2) CMIS-derived low-resolution soil moisture is linked to the scene optical parameters, such as NDVI (Normalized Difference Vegetation Index), surface albedo, and LST (Land Surface Temperature). The linkage of the microwave-derived soil moisture to NDVI, surface albedo and LST is based on the "Universal Triangle" approach of relating land surface parameters. The three high-resolution optical parameters are aggregated to microwave resolution for the purpose of building the linkage model. The linkage model, in conjunction with high-resolution NDVI, surface albedo, and LST, is then used to disaggregate microwave soil moisture into high-resolution soil moisture.

VIIRS will collect radiometric and imagery data in 22 spectral bands within the visible and infrared region ranging from 0.4 to 12.5 µm. These data are calibrated and geolocated in ground processing to generate SDRs (Sensor Data Records) that are equivalent to NASA Level 1B products. The VIIRS SDRs in turn will be used to generate 22 EDRs (Environmental Data Records) including two KPPs (Key Performance Parameters): SST (Sea Surface Temperature) and Imagery. Since the quality of these EDRs depends upon the quality of the underlying SDRs, adequate SDR quality is crucial to JPSS mission success. 94) 95)

DNB (Day Night Band) overview in VIIRS:

The DNB will measure VIS radiances from the Earth and atmosphere (solar/lunar reflection and both natural and anthropogenic nighttime light emissions) during both day and night portions of the orbit. In comparison to the OLS (Operational Linescan System) of the DMSP series, some of the DNB channel improvements include 1) reduced instances of pixel saturation, 2) a smaller IFOV, leading to reduced spatial blurring, 3) superior calibration and radiometric resolution, 4) collocation with multispectral measurements on VIIRS and other NPOESS sensors, 5) and generally increased spatial resolution and elimination of cross-track pixel size variation. 96)

The DNB is implemented as a dedicated focal plane assembly (FPA) that shares the optics and scan mechanism of the other VIIRS spectral bands. This integral design approach offers lower overall system complexity, cost, mass, and volume compared to a separate DNB sensor. Unlike the OLS, the DNB will feature radiometric calibration, with accuracy comparable to the other VIIRS spectral bands.

To achieve satisfactory radiometric resolution across the large dynamic range (seven orders of magnitude) of day/night radiances encountered over a single orbit, the DNB selects its amplification gain dynamically from three simultaneously collecting stages (groups of detectors residing upon the same FPA). The stages detect low-, medium-, and high-radiance scenes with relative radiometric gains of 119,000:477:1 (high:medium:low gain). Each of the three stages covers a radiance range of more than 500:1, so that the three together cover the entire required radiance range with generous overlap. Two identical copies of the high-gain stage are provided, which improves the SNR at very low signal levels and allows for the correction of pixels impacted by high-energy subatomic particles. The scene is scanned sequentially such that each scene is imaged by all three gains virtually simultaneously.

The signals from all gain stages are always digitized, using 14 bits for the high-gain stage and 13 bits for the medium- and low-gain stages. This fine digitization assures the DNB will have a sufficiently fine radiometric resolution across the entire dynamic range. Logic in the VIIRS Electronics Module (EM) then selects, on a pixel-by-pixel basis, the most appropriate of the three stages to be transmitted to Earth. In general, the VIIRS EM logic chooses the most sensitive stage in which the pixel is not saturated. This imaging strategy produces nonsaturated calibrated radiances in bright areas, and data with a lower dynamic range in the darkest areas with less SNR and radiometric accuracy.

In summary, the VIIRS DNB feature will bring significant advances to operational and research applications at night (over OLS operations) due to the increased sensitivity of the instrument.

 

RSB (Reflective Solar Band) radiometric calibration: 97) 98)

VIIRS features 15 reflective solar bands (RSB) in the range of 0.4-2.25 µm. The reflective bands use sunlight reflected from a SD (Solar Diffuser) after passing through an attenuating SDS (Solar Diffuser Screen) as a reference illumination source. The RSB calibration is currently performed by offline trending of calibration scale factors derived from the SD and SV (Space View) observations. These calibration scale factors are used to periodically update LUT (Look-Up Tables) used by the ground processing to generate the calibrated earth radiance and reflectance in the Sensor Data Records (SDR).

RSB calibration data is acquired once per orbit when sunlight incident on the SD uniformly illuminates the VIIRS detectors, providing a large and calculable reference radiance level. The calibration scale factor is the ratio of the calculated SD radiance at the entrance aperture to the SD radiance measured by the instrument using calibration coefficients derived from the pre-launch calibration. The calibration scale factor in effect measures the change in instrument "gain" as the instrument ages on orbit relative to the gain measured during pre-launch instrument response characterization.

TED (Thermal Emissive Band) calibration: 99)

VIIRS has 7 thermal emissive bands use an OBC-BB (On-Board Calibrator Blackbody) maintained at a constant elevated temperature as a reference illumination source. The 7 emissive bands are centered at 3.74, 11.45, 3.75, 4.05, 8.55, 10.76, and 12.01 µm. The two emissive image bands are mainly for cloud imagery and precise geolocation. The 5 moderate-resolution emissive bands are used to determine surface temperature and cloud top pressure. The only dual gain band TEB M13 is used for determining surface temperature at low radiance, and fire detection at high radiance.

The VIIRS emissive band calibration concept is a common two-point calibration by viewing onboard blackbody and cold space. However, the VIIRS emissive band calibration algorithm is more complicated than other sensors such as AVHRR and MODIS, because of the instrument response verses the scan angle. The TEBs (Thermal Emissive Bands) are calibrated using OBC-BB that has been carefully characterized in prelaunch activities. The OBC-BB emissivity is estimated to be 0.99609-0.99763 for the TEB bands based on prelaunch testing in the thermal vacuum chamber. The OBC-BB temperature is carefully controlled using heater elements and thermistors. The calibration algorithm, based on measured BB temperature and emissivity, computes radiances and compares it with counts to determine gain adjustments.

VIIRS significantly outperforms the legacy AVHRR in spatial, spectral, and radiometric accuracy. Early assessment of the VIIRS TEB calibration shows the sensor is stable and exceeds the specification. The onboard calibration accuracy for NEdT compares very favorably with pre-launch thermal vacuum tests. Consistency tests among VIIRS, MODIS, AVHRR, and CrIS further confirm the stability and accuracy of the VIIRS TEB.

 


 

JPSS Common Ground System (CGS):

In September 2010, the Raytheon Company was awarded a contract by NASA on behalf of NOAA for the development of JPSS-1 (Joint Polar Satellite System-1). The award of the JPSS Common Ground System enables uninterrupted support to meet both civilian and defense weather needs. It allows Raytheon to continue the development and evolution of the ground system into an exceptional operational program for JPSS and DMSP (Defense Meteorological Satellite Program). 100) 101) 102)

The main elements of the JPSS common ground system for NOAA and DoD – currently comprises:

• C3S (Command, Control and Communications Segment)

- Includes mission planning, enterprise management, antenna resource scheduling, satellite operations, data relay and spacecraft and instrument engineering. A key feature of the C3S is the 15 unmanned global ground stations that receive JPSS and DWSS mission data, termed the DRN (Distributed Receptor Network). The receptors, linked with high-bandwidth commercial fiber, can quickly transport the data to four U.S. data processing centers. Most data will ultimately be completely processed and delivered to the Weather Centrals in less than 30 minutes from the time of collection.

- The MMC (Mission Management Center) provides accurate, high-performance tools that precisely manage JPSS and DWSS missions. The C3S tools give crews keen insight, comprehensive operational oversight, detailed mission planning capability, full control of space and ground assets, continuous monitoring and assessment of overall system performance.

• IDPS (Interface Data Processing Segment). The IDPS features high-speed, symmetric, multi-processing computers that will rapidly convert large streams of JPSS and DWSS sensor data that are 100 times the volume of legacy data, providing numerous EDRs (Environmental Data Records) at four weather Centrals in the United States. These vital EDRs range from atmospheric to land and ocean surface products. The EDRs detail cloud coverage, temperature, humidity and ozone distribution, as well as snow cover, vegetation, sea surface temperatures, aerosols, space environment and earth radiation budget information. This wealth of information enables numerous users to monitor and predict changes in weather, climate, and ocean conditions. JPSS and DWSS products will also be available to the scientific community to expand our knowledge of the environment.

• FTS (Field Terminal Segment). The FTS, equipped with specially configured IDPS software, will permit worldwide fixed and mobile field terminals deployed aboard ships, at military bases, in theaters of operation, and at educational and scientific institutions to receive and process the continuous broadcasts of JPSS and DWSS sensed data as the satellites pass overhead.

JPSS_Auto2

Figure 30: JPSS operations overview (NASA, NOAA, Ref. 1)

JPSS_Auto1

Figure 31: JPSS high level operational concept (Ref. 101)

Satellite owner

Satellite

JPSS service

NOAA

Suomi-NPP (launch on October 28, 2011)
JPSS-1 (launch in 2017)
JPSS-2 (launch in 2022)

Full Service: commanding and data processing

DoD (Department of Defense)

DMSP
Coriolis (launch January 6, 2003)

Data acquisition and routing

JAXA (Japan Aerospace Exploration Agency)

GCOM-W1 (launch May 17, 2012)
GCOM-W2
GCOM-W3
GCOM-C1 (launch in 2014)

Data processing

EUMETSAT (European Organization for the Exploitation of Meteorological Satellites)

MetOp-A (launch October 19, 2006)
MetOp-B (launch September 17, 2012)

Data routing

Table 13: JPSS satellite fleet (Ref. 101)

On January 17, 2014, Raytheon successfully completed the Block 2 CDR (Critical Design Review), confirming readiness to support the JPSS-1 satellite. Block 2 represents a complete architectural and technological refresh of JPSS CGS and a significant step in supporting the next generation of the program. 103)

 

US Partnerships in JPSS program:

• EUMETSAT

- EUMETSAT provides mid-morning orbit

- Both support planning and operations (e.g., Antarctic Data Acquisition)

• JAXA (Japan Aerospace Exploration Agency)

- GCOM-W1 (Global Change Observation Mission – Water) provides AMSR-2 data – continuity for NASA's Aqua satellite

- NOAA provides ground system services in exchange for data from AMSR-2

• NSC (Norwegian Space Center), Norway

- Provision of satellite tracking and environmental data acquisition services

• Canada (DND) and France (CNES) for SARSAT Program

• France (CNES) – Argos Program

Since being deployed for NOAA's Suomi-NPP (National Polar-orbiting Partnership) in 2011, JPSS CGS, one of the few multi-mission ground solutions, is now providing unprecedented global observation capability. Leveraging a common ground system across national and international agencies is the most efficient and cost effective way to improve global environmental observational capabilities. 104)

By leveraging a flexible architecture and integrating new and legacy technologies, the JPSS CGS reduces development and sustainment costs and has proven it can be quickly adapted to a variety of mission needs spanning civil, military and scientific communities.

In addition to supporting NOAA's Suomi-NPP and the GCOM-W1 mission of JAXA, other JPSS CGS support includes the MetOp series of EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) and DoD's DMSP (Defense Meteorological Satellite Program) series.

JPSS_Auto0

Figure 32: JPSS ground system high-level architecture as of July 2012 (image credit: NASA, NOAA, Ref. 1)

 

JPSS GS Architecture with DoDAF 2 (Department of Defense Architecture Framework version 2.0)

1) Introduction – Modeling the JPSS GS Architecture with DoDAF 2. 105)

• The JPSS Ground System (GS) is a complex, globally operated environmental satellite control, data retrieval, data processing, and environmental data product distribution system. Items of complexity include a large number of:

- takeholders

- project processes

- relationships with development contractors, and

- architectural modernization.

• The JPSS Ground Project (GP) uses the DoDAF 2.0 (Department of Defense Architecture Framework version 2.0) to manage and coordinate the GS development by identifying:

- JPSS GS organizational structure and performers;

- actions performed by the organizational entities;

- information that must flow among the entities; the systems, functions, and actions that enable realization of the JPSS capabilities; and,

- information and data exchanged among performers and systems.

• This focus on is on the processes for providing the SDRs (Sensor Data Records) and EDRs (Environmental Data Records) that are reduced from the satellite data and distributed to the program customers.

- A global view of the JPSS GS architecture is given in the following reference. 106)

2) Using DoDAF 2 with UPDM 2 to Describe JPSS Data Reduction Processes.

• A satellite's data is arriving at the IDPS (Integrated Data Processing System) in the NSOF (NOAA Satellite Operations Facility) in Suitland, MD.

• The systems views needed to describe how the IDPS processes the data are those prescribed by the DoDAF 2 Systems Viewpoint (SV) SV-4 diagrams and SV-6 tables.

- There are 2 types of SV-4 diagrams: the System Functionality Description describes the hierarchy of systems and system Functions

- while the System Functionality Flow Description shows how the data flows through each system function action that processes the data.

- Each SV-6 System Resource Flow Matrix line item is a tabular description of each data element exchange between two system function actions in the companion SV-4 flow diagram.

• The DoDAF 2 views are presented using the UPDM 2 (Unified Profile for DoDAF and MODAF version 2.0).

- The modeling tool used is MagicDraw UML version 17.0.3 with UPDM 2 version 17.0.3.

- DoDAF 2 was selected when JPSS was initiated to take over for the NPOESS program.

3) SV-4 System Functionality Description Diagrams (see Ref. 105).

• Provide hierarchical views of the systems with their included functions.

• Documentation of the systems and functions are captured in the properties of those systems and functions.

• Show the lower level system and software functions used to process the data captured by the JPSS Project.

• Identify the system and software functional process flows that generate each deliverable data product.

• Assist in Systems Engineering requirements tracking.

• Identify the lower level specifications and verification plans defined in the SRS (Software Requirements Specification) that govern the JPSS data products.

• Identify the software algorithms contained in the lower level specifications.

4) Summary:

• The JPSS GS weather data processing architecture is indeed very complex

• Identifying and managing all levels of product dependencies to ensure product performance has been a challenge.

- Previous attempts to capture have quickly fallen out of date as the massive data flow and algorithm architecture evolved.

- Flight system Cal/Val is scheduled to span months of data capture, reduction, analysis and adjustment.

• The application of DoDAF 2/UPDM 2 has provided a mechanism to capture and manage this complex data processing architecture. Traces algorithm and data back to L1/L2 weather/climate performance metrics.

• The tool automatically manages dependencies which used to be managed by engineering/scientific analysis.

• The application of DoDAF 2/UPDM 2 will lead to a more structured process at significantly reduced resource costs, enabling more efficient and faster evolution and progress.

 


1) Preston M. Burch, "Joint Polar Satellite System (JPSS), Program Overview and Status," July 31, 2012, URL: http://www.goddard-contractors-association.
org/presentations/7-31-2012%20GCA%20Presentation%20Preston%20Burch.pdf

2) http://www.nesdis.noaa.gov/jpss/

3) Ajay Mehta, Marcus Watkins, "Joint Polar Satellite System (JPSS)," 2012, URL: http://www.goes-r.gov/downloads/2012-AMS/01/Mehta.pdf

4) http://www.jpss.noaa.gov/launch_schedule.html

5) http://www.jpss.noaa.gov/satellites.html

6) http://www.jpss.noaa.gov/mission.html

7) http://www.jpss.noaa.gov/index.html

8) "Joint Polar Satellite System," NOAA/NESDIS Newsletter 4, 2010, URL: http://www.nesdis.noaa.gov/pdf/jpss.pdf

9) "Restructuring the National Polar-orbiting Operational Environmental Satellite System," earthzine, Feb. 23, 2010, URL: http://www.earthzine.org/2010/02/23/restructuring-the-
national-polar-orbiting-operational-environmental-satellite-system/

10) "Science Transition Plan - Center for Satellite Applications and Research (STAR) Joint Polar Satellite System (JPSS)," NOAA/NESDIS/STAR, March 2012, URL: ftp://www.star.nesdis.noaa.gov/pub/smcd/opdb/OIGbrief9May2012
/Requested%20Documents/Science%20Transition%20Plan%20March%2019%202012.docx

11) "JPSS Program, JPSS-1 Mission Reach Key Milestones," NASA, Aug. 12, 2013, URL: http://www.nasa.gov/content/goddard/jpss-program-
jpss-1-mission-reach-key-milestones/#.UgtDBKzODWI

12) Mitchell Goldberg, "Joint Polar Satellite System (JPSS) - The Contribution of Operational and Research Applications from the Joint Polar Satellite System to Societal Benefits," The 1st KMA International Meteorological Satellite Conference, Seoul, Korea, November 16-18, 2015, URL: http://www.kmaimsc.kr/html/menu1_sub4.php

13) Harry Cikanek, "NOAA Polar Orbiting Satellites - From POES to JPSS: New capabilities in satellite observations," NOAA Satellite Conference 2015, Greenbelt, MD, April 28, 2015, URL: http://www.jpss.noaa.gov/events_conferences/satellite
_conference/presentations/2.3a_NSC2015_Session_Cikanek.pdf

14) "NASA Finalizes Contracts for NOAA's JPSS-1 Mission," NASA, August 10, 2012, URL: http://www.nasa.gov/centers/goddard/news/releases/2012/12-066.html

15) "Joint Polar Satellite System (JPSS)," BATC, 2012, URL: http://www.ballaerospace.com/page.jsp?page=251

16) "Ball Aerospace Incorporates Enhanced Data Communication for JPSS-1 Satellite," BATC, Aug. 13, 2012, URL: http://www.ballaerospace.com/page.jsp?page=30&id=483

17) "Joint Polar Satellite System (JPSS)," April 9, 2014, URL: http://www.ofcm.gov/nopc/meetings/2014-01/
JPSS%20Program%20Status%20-%20NOPC%20041714.pdf

18) Scott C. Asbury, "Building the Nation's Next Generation Nation s Operational Polar‐Orbiting Weather Satellite," 92nd American Meteorological Society Annual Meeting, New Orleans, LA, USA, Jan. 22-26, 2012, Poster No 675, URL: https://ams.confex.com/ams/93Annual/webprogram/Handout
/Paper223892/Asbury%20AMS%202013%20JPSS%20Spacecraft%20Poster.pdf

19) "NOAA's JPSS-1 Satellite Arrives in California," NASA, 5 Sept. 2017, URL: https://www.nasa.gov/feature/goddard/2017
/noaas-jpss-1-satellite-arrives-in-california

20) "ULA to launch NASA's JPSS-2 mission," Satnews Daily, March 6, 2017, URL: http://www.satnews.com/story.php?number=847881446

21) "EUMETSAT and NOAA sign Polar System Program Implementation Plan," EUMETSAT, Dec. 2016, URL: http://www.eumetsat.int/website/home/News/DAT_3319255.html

22) David A. Powner, "Polar Satellites: NOAA Faces Challenges and Uncertainties that Could Affect the Availability of Critical Weather Data," July 7, 2016, URL: http://www.gao.gov/assets/680/678255.pdf

23) "NOAA's JPSS-1 Satellite Shakes and Bakes in Preparation for Launch," NESDIS News Archive, April 27, 2016, URL: http://www.nesdis.noaa.gov/news_archives/noaa_jpss1_satellite.html

24) "NASA Awards Contract for Joint Polar Satellite System Missions Instrument," NOAA, April 22, 2016, URL: http://www.jpss.noaa.gov/media.html?story=news-80

25) NASA Awards Instrument Contract for Joint Polar Satellite System Missions," NOAA, March 17, 2016, URL: http://www.jpss.noaa.gov/media.html?story=news-78

26) "All Instruments Now Integrated With JPSS-1 Spacecraft," NOAA/NESDIS, Feb. 11, 2016, URL: http://www.nesdis.noaa.gov/news_archives/jpss_spacecraft.html

27) "Solar Array for JPSS-1 Completes Successful Deployment Testing," NOAA/NESDIS Quarterly Newsletter, July - September 2015, Issue 3, Oct. 16, 2015, p. 2, URL: http://www.jpss.noaa.gov/pdf/JPSS_Newsletter_3Q15.pdf

28) "Ball Aerospace Powers on NOAA's JPSS-1 Weather Satellite," BATC News Release, June 30, 2015, URL: http://www.ballaerospace.com/page.jsp?page=30&id=637

29) "Cross-track Infrared Sounder Instrument Now Integrated on JPSS-1 Spacecraft," NOAA, April 9, 2015, URL: http://www.jpss.noaa.gov/media.html?story=news-60

30) "Nation's Next Polar-orbiting Weather Satellite Heads Toward Finish Line for Instrument Integration," BATC, April 27, 2015, URL: http://www.ballaerospace.com/page.jsp?page=30&id=631

31) "NOAA's JPSS-1 Satellite Imaging Instrument Is Successfully Integrated on Spacecraft," NOAA, March 10, 2015, URL: http://www.jpss.noaa.gov/media.html?story=news-57

32) "Critical JPSS-1 Satellite Instrument Completes Pre-Shipment Review — Cross-track Infrared Sounder (CrIS) Readied for Delivery," NOAA, Feb. 18, 2015, URL: http://www.jpss.noaa.gov/media.html?story=news-55

33) "CERES Instrument Delivered to Ball Aerospace," NOAA/NESDIS, June 17, 2014, URL: http://www.jpss.noaa.gov/media_gallery-p1.html

34) "JPSS-1 Satellite Ozone Monitoring Instrument Completes Major Milestone," NOAA/NESDIS, June 12, 2014, URL: http://www.jpss.noaa.gov/media.html?story=news-39

35) John Leslie, "First JPSS-1 satellite instrument is ready for installation," April 25, 2014, URL: http://phys.org/news/2014-04-jpss-satellite-instrument-ready.html

36) "Ball Aerospace Powers On Joint Polar Satellite System (JPSS-1) Spacecraft," BATC News Release, March 17, 2014, URL: http://www.ballaerospace.com/page.jsp?page=30&id=576

37) "Ball Aerospace Completes Risk Reduction Test for JPSS-1 Satellite," Space Ref, Feb. 3, 2014, URL: http://www.spaceref.com/news/viewpr.html?pid=42425

38) "Joint Polar Satellite System Spacecraft Completes Delta Critical Design Review," NOAA, Dec. 2012, URL: http://www.jpss.noaa.gov/media.html

39) "NOAA: First JPSS-1 satellite instrument is ready for installation," NOAA, April 24, 2014, URL: http://www.noaanews.noaa.gov/stories2014/20140424_jpss.html

40) Steve Cole, John Leslie, "NASA Launches NOAA Weather Satellite Aboard United Launch Alliance Rocket to Improve Forecasts," NASA, 18 Nov. 2017, Release 17-086, URL: https://www.nasa.gov/press-release/nasa-launches-noaa-
weather-satellite-aboard-united-launch-alliance-rocket-to-improve

41) "LIFT OFF! NOAA's JPSS-1 Heads to Orbit," NOAA, Nov. 18, 2017, URL: https://www.nesdis.noaa.gov/JPSS-1

42) "ELaNa XIV CubeSats Launch on JPSS-1 Mission," NASA, 18 Nov. 2017, URL: https://www.nasa.gov/feature/elana-xiv-cubesat-launch-on-jpss-1-mission

43) Stephen Clark, "Polar-orbiting weather satellite joined up with Delta 2 rocket in California," Spaceflight Now, October 27, 2017, URL: https://spaceflightnow.com/2017/10/27/polar-orbiting-weather
-satellite-joined-up-with-delta-2-rocket-in-california/

44) "JPSS-1 Designated NOAA-20 at Orbit," NOAA/NESDIS Quarterly Newsletter, July - September 2015, Issue 3, Oct. 16, 2015, p. 2, URL: http://www.jpss.noaa.gov/pdf/JPSS_Newsletter_3Q15.pdf

45) "All CubeSats Successfully Deployed," NASA, 18 Nov. 2017, URL: https://blogs.nasa.gov/jpss/2017/11/18/all-cubesats-successfully-deployed/

46) "Statements from ULA and NASA as They Finally Launch NOAA's JPSS-1... Forever Changing Weather Forecasts," Satnews Daily, 18 Nov. 2017, URL: http://www.satnews.com/story.php?number=77583444

47) "Northrop Grumman to Complete Advanced Technology Microwave Sounder for Joint Polar Satellite Systems," Space Daily, Sept. 15, 2011, URL: http://www.spacedaily.com/reports/Northrop_Grumman_to_Complete_
Advanced_Technology_Microwave_Sounder_for_Joint_Polar_Satellite_Systems_999.html

48) Christopher W. Brann, "Joint Polar Satellite System (JPSS) Instrument Transition to NASA and Development Status," Proceedings of SPIE Remote Sensing 2012, 'Sensors, Systems, and Next-Generation Satellites,' Edinburgh, Scotland, UK, Vols. 8531-8539, Sept. 24-27, 2012

49) http://www.jpss.noaa.gov/instruments_interactive.html

50) William J. Blackwell, Christy F. Cull, Richard N. Czerwinski, R. Vincent Leslie, Idahosa Osaretin, "The Advanced Technology Microwave Sounder (ATMS): New Capabilities for Atmospheric Sensing," 92nd AMS (American Meteorological Society) Annual Meeting, New Orleans, LA, USA, Jan. 22-26, 2012, URL: http://www.goes-r.gov/downloads/2012-AMS/02/Blackwell.pdf

51) "Advanced Technology Microwave Sounder (ATMS)," NASA, URL: http://npp.gsfc.nasa.gov/atms.html

52) Mitch Goldberg, "CrIS and ATMS Applications," NOAA Satellite Conference 2015, Greenbelt, MD, April 28, 2015, URL: http://www.jpss.noaa.gov/events_conferences/satellite_
conference/presentations/2.3c_NSC2015_Session_Goldberg.pdf

53) "NUCAPS Sounding Products," NOAA, URL: http://www.ospo.noaa.gov/Products/atmosphere/soundings/nucaps/index.html

54) http://www.star.nesdis.noaa.gov/jpss/CrIS.php

55) Joe K. Taylor, H. E. Revercomb, D. C. Tobin, R. O. Knuteson, F. A. Best, P .J. Gero, R. K. Garcia, N. C. Ciganovich, M. W. Werner, D. D. LaPorte, D. Deslover, L. Borg, "Suomi NPP/JPSS Cross-Track Infrared Sounder (CrIS): Calibration Validation with the Aircraft Based Scanning High-Resolution Interferometer Sounder (S-HIS)," 93rd AMS (American Meteorological Society) Annual Meeting, Austin,TX, USA, January 6-10, 2013, URL: https://ams.confex.com/ams/93Annual/webprogram
/Manuscript/Paper224132/Taylor%20et%20al%20AMS-10Feb13.pdf

56) F. L. Williams, R. Johnston, "Spatial and Spectral Characterization of the Cross-track Infrared Sounder (CrIS): Test Development," Proceedings of SPIE, July 7-11, 2002, Seattle, WA, Vol. 4818

57) "Cross-track Infrared Sounder (CrIS)," NASA, Feb. 19, 2013, URL: http://npp.gsfc.nasa.gov/cris.html

58) H. J. Bloom, "The Cross-Track Infrared Sounder (CrIS): A Sensor for Operational Meteorological Remote Sensing," Fourier Spectroscopy, Feb. 5-8, 2001, OSA 2001 Technical Digest, pp. 76-78

59) S. Masterjohn , A. I. D'Souza, L .C. Dawson, P. Dolan, P. S. Wijewarnasuriya, J. Ehlert, "Cross-Track Infrared Sounder FPAA Performance," Proceedings of SPIE, July 7-11, 2002, Seattle, WA, Vol. 4820

60) R. Poulin, S. Lantagne, Y. Dutil, S. Levesque, F. Châteauneuf, "CrIS Raw Data Records (Level 0) To Sensor Data Records (Level 1b) Processing," Proceedings of SPIE, July 7-11, 2002, Seattle, WA, Vol. 4818

61) H. Bloom, "The Cross-track Infrared Sounder (CRIS): a sensor for operational meteorological remote sensing," Proceedings of. IGARSS 2001, Sydney, Australia, July 9-13, 2001

62) "CERES - Clouds and the Earth's Radiant Energy System," NASA brochure, 2017, URL: https://eospso.gsfc.nasa.gov/sites/default
/files/publications/CERES%20Mission%20Brochure%20508.pdf

63) CERES instrument team, "CERES Instrument and Calibration Status," Earth Radiation Budget Workshop 2010, Paris, France, Sept. 13-16, 2010, URL: http://meghatropiques.ipsl.polytechnique.fr
/erb2010/dmdocuments/DAY1/2-Priestley_0910_STM_Paris.pdf

64) CERES Science Requirements Specification for NPP," June 2009, URL: http://science.larc.nasa.gov/ceres/NPP/pdfs/Reqm_Spec_V1.pdf

65) Kory J. Priestley, G. Louis Smith, Bruce A. Wielicki, Norman G. Loeb, "CERES FM-5 on the NPP spacecraft: continuing the Earth radiation budget climate data record," Proceedings of SPIE, Vol. 7474, 74740D, Aug. 2009; Berlin, Germany, doi:10.1117/12.830385

66) Kory J. Priestley, G. Louis Smith , Susan Thomas, Denise Cooper , Robert B. Lee III, Dale Walikainen, Phillip Hess, Z. Peter Szewczyk, Robert Wilson, "NPP Clouds and the Earth's Radiant Energy System (CERES), predicted sensor performance calibration and preliminary data product performance," Proceedings of IGARSS 2009 (IEEE International Geoscience & Remote Sensing Symposium), Cape Town, South Africa, July 12-17, 2009

67) http://ceres.larc.nasa.gov/

68) Susan Thomas, Kory J. Priestley, Mohan Shankar, Nathaniel P. Smith, Mark G. Timcoe, "Pre-launch Characterization of the Clouds and the Earth's Radiant Energy System (CERES) Flight Model 5 (FM5) Instrument on NPP," Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), Vancouver, Canada, July 24-29, 2011

69) Eric Gillard, "Keeping an Eye on Earth's Energy Budget," NASA, 24 Oct. 2017, URL: https://www.nasa.gov/feature/langley/keeping-an-eye-on-earth-s-energy-budget

70) G. Louis Smith, Kory J. Priestley, Norman G. Loeb, "Clouds and Earth Radiant Energy System (CERES): from Measurement to Data Products," Proceedings of the 2012 IEEE Aerospace Conference, Big Sky, Montana, USA, March 3-10, 2012

71) R. S. Wilson, R. B. Lee, et al., "On-orbit solar calibrations using the Aqua Clouds and Earth's Radiant Energy System (CERES) in-flight calibration system," Proceedings of SPIE, Vol. 5151, 2003, pp. 288-299

72) L. E. Flynn, J. Hornstein, E. Hilsenrath, "The Ozone Mapping and Profiler Suite (OMPS) The Next Generation of US Ozone Monitoring Instruments," Proceedings of IGARSS 2004, Anchorage, AK, USA, Sept. 20-24, 2004

73) http://npoess.noaa.gov/instruments/OMPS.pdf#toolbar=0&navpanes=0

74) Scott Asbury, Stein Cass, Lester Farwell, Ken Eastman, Quinn Remund, Juan Rodriguez, "OMPS - The Next Generation Sensor Suite for Global Ozone Monitoring," URL: http://npoess.noaa.gov/IPOarchive/ED/Outreach_Materials/public
_presentations/AMS/2008/Posters/2.NPOESS_Sym_2008_Asbury_Final.pdf

75) L. Flynn with contributions from the NOAA and NASA OMPS S-NPP Teams, "Atmospheric Chemistry Products from the Ozone Mapping and Profiler Suite (OMPS): Validation and Applications," NOAA Satellite Conference 2015, Greenbelt, MD, April 28, 2015, URL: http://www.jpss.noaa.gov/events_conferences/satellite_
conference/presentations/2.3d_NSC2015_Session_Flynn_F.pdf

76) "Joint Polar Satellite System Algorithm & Data Products Ozone Mapping and Profiler Suite (OMPS)," STAR-JPSS, July 26, 2012, URL: http://www.star.nesdis.noaa.gov/jpss/OMPS.php

77) D. Newell, J. C. Larsen, H. E. Snell, "OMPS - The Next Generation US Operational Ozone Monitor," MAXI Review, Oct. 29-31, 2002

78) M. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, et al., "Nadir Ultraviolet Imaging Spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS)," SPIE Annual Meeting 2002: Remote Sensing and Space Technology, July 7-11, 2002, Seattle, WA, Vol. 4814

79) "Ball Aerospace OMPS Sensor for JPSS-1 Progressing Ahead of Schedule," BATC, January 08, 2013, URL: http://www.ballaerospace.com/page.jsp?page=30&id=510

80) "Joint Polar Satellite System Algorithm & Data Products Visible Infrared Imaging Radiometer Suite (VIIRS)," STAR-JPSS, July 26, 2012, URL: http://www.star.nesdis.noaa.gov/jpss/VIIRS.php

81) Tanya Scalione, Hilmer Swenson, Frank DeLuccia, Carl Schueler , Ed Clement, Lane Darnton, "Design Evolution of the NPOESS VIIRS Instrument Since CDR," Proceedings of IGARSS, Toulouse, France, July 21-25, 2003

82) T. Scalione, F. De Luccia, J. Cymerman, E. Johnson, J. K. McCarthy, D. Olejniczak, "VIIRS Initial Performance Verification Subassembly, Early Integration and Ambient Phase I Testing of EDU," Proceedings of IGARSS 2005, Seoul, Korea, July 25-29, 2005

83) C. P. Welsch, H. Swenson, S. A. Cota, F. DeLuccia, J. M. Haas, C. Schueler, R. M. Durham, J. E. Clement, P. E. Ardanuy, "VIIRS (Visible Infrared Imager Radiometer Suite): A Next-Generation Operational Environmental Sensor for NPOESS, IGARSS/IEEE 2001, Sydney, Australia, July 9-13, 2001

84) Carl Schueler , J. Ed Clement, Lane Darnton, Frank De Luccia, Tanya Scalione, Hilmer Swenson, "VIIRS Sensor Performance," Proceedings of IGARSS 2003, Toulouse, France, July 21-25, 2003

85) Tanya Scalione, Frank De Luccia, John Cymerman, Eric Johnson, James K. McCarthy, Debra Olejniczak, "VIIRS Initial Performance Verification, Subassembly, Early Integration and Ambient Phase I Testing of EDU," URL:http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA449
986&Location=U2&doc=GetTRDoc.pdf

86) "Visible Infrared Imaging Radiometer Suite (VIIRS)," NASA/GSFC, Feb. 19, 2013, URL: http://npp.gsfc.nasa.gov/viirs.html

87) "Visible/Infrared Imager Radiometer Suite (VIIRS)," Raytheon Fact Sheet, 2011, URL: http://npp.gsfc.nasa.gov/images/VIIRS_DS152%20Approved%208-10-11.pdf

88) "Visible Infrared Imaging Radiometer Suite (VIIRS)," NOAA, URL: http://www.jpss.noaa.gov/viirs.html

89) Carven A Scott, "VIIRS Applications," NOAA Satellite Conference 2015, Greenbelt, MD, April 28, 2015, URL: http://www.jpss.noaa.gov/events_conferences/satellite
_conference/presentations/2.3b_NSC2015_Session_Scott.pdf

90) B. Guenther, "A Calibration Algorithm Design and Analysis for VIIRS Thermal Emissive Bands Based on the EOS MODIS Approach," Proceedings of IGARSS 2003, Toulouse, France, July 21-25, 2003

91) X. Xiong, R. Murphy, "The Impact of Solar Diffuser Screen on the Radiometric Calibration of Remote Sensing Systems," Proceedings of IGARSS 2003, Toulouse, France, July 21-25, 2003

92) R. Murphy, D. Olejniczak,J. Clement, "VIIRS: The Next Generation Visible-Infrared Imaging Radiometer," Proceedings of the 31st International Symposium on Remote Sensing of Environment (ISRSE) at NIERSC (Nansen International Environmental and Remote Sensing Center), Saint Petersburg, Russia, June 20-24, 2005

93) P. Ardanuyla, C. Schueler, S. Miller, K. Jensen, W. Emery, "Use of CAIV Techniques to Build Advanced VIIRS Approaches for NPOESS Key EDRs," Proceedings of SPIE, Vol 4814, SPIE Annual Meeting 2002: Remote Sensing and Space Technology, July 7-11, 2002, Seattle, WA

94) Frank De Luccia, Bruce Guenther, Chris Moeller, Xiaoxiong Xiong, Robert Wolfe, "NPP VIIRS Pre-launch Performance and SDR Validation," Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), Vancouver, Canada, July 24-29, 2011

95) Mitchell D. Goldberg, "SUOMI National Polar-orbiting Partnership Status and Instrument Performance," Proceedings of the 11th Annual JACIE (Joint Agency Commercial Imagery Evaluation ) Workshop, Fairfax, Va, USA, April 17-19, 2012, URL: http://calval.cr.usgs.gov/wordpress/wp-content
/uploads/Goldberg_JACIE_2012_Goldberg1.pdf

96) T. E. Lee, S. D. Miller, F. J. Turk, C. Schueler, R. Julian, S. Deyo, P. Dills, S. Wang, "The NPOESS VIIRS Day/Night Visible Sensor," BAMS (Bulletin of the American Meteorological Society), Vol. 87, No 2, Feb. 2006, pp. 191-198

97) Kameron Rausch, Frank De Luccia, David Moyer, Jason Cardema, Ning Lei, Jon Fulbright, Chengbo Sun, Vincent Chiang, "Suomi NPP VIIRS Reflective Solar Band Radiometric Calibration," Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), Munich, Germany, July 22-27, 2012

98) Slawomir Blonski, Changyong Cao, Sirish Uprety, Xi Shao, "Using Antarctic Dome C Site and simultaneous nadir overpass observations for monitoring radiometric performance of NPP VIIRS instrument," Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), Munich, Germany, July 22-27, 2012

99) Quanhua Liu, Changyong Cao, Fuzhong Weng, "Suomi NPP VIIRS emissive band radiance calibration and Analysis," Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), Munich, Germany, July 22-27, 2012

100) "Raytheon Awarded Joint Polar Satellite System Contracts - NASA contracts replace and expand previous NPOESS commitment to Raytheon," URL: http://www.globalsecurity.org/space/library/news/2010/space-100930-raytheon01.htm

101) Jeffrey L. Hayden, Alan Jeffries, "On Using SysML, DoDAF 2.0 and UPDM to Model the Architecture for the NOAA's Joint Polar Satellite System (JPSS) Ground System (GS)," Proceedings of SpaceOps 2012, The 12th International Conference on Space Operations, Stockholm, Sweden, June 11-15, 2012, URL: http://www.spaceops2012.org/proceedings/documents/id1289592-Paper-001.pdf

102) "Joint Polar Satellite System (JPSS) Common Ground System (CGS)," Raytheon, URL: http://www.raytheon.com/capabilities/rtnwcm/groups
/iis/documents/content/rtn_iis_jpss_datasheet.pdf

103) "Raytheon receives contract modification on JPSS Common Ground System," Space Daily, March 6, 2014, URL: http://www.spacedaily.com/reports/Raytheon_receives_
contract_modification_on_JPSS_Common_Ground_System_999.html

104) "Joint Polar Satellite System Common Ground System now serving newest mission," Space Daily, January 10, 2013, URL: http://www.spacedaily.com/reports/Joint_Polar_Satellite
_System_Common_Ground_System_now_serving_newest_mission_999.html

105) Robert Morgenstern, Jeff Hayden, Alan Jeffries, Laura Ellen Dafoe, "Application of DoDAF 2.0 for NOAA's JPSS Ground System and Project," GSAW (Ground System Architectures Workshop) 2013, March 18-21, 2013, Los Angeles, CA, USA, URL: http://sunset.usc.edu/GSAW/gsaw2013/s4/jeffries.pdf

106) Robert Morgenstern, Jeff Hayden, Alan Jeffries, "Defining the Complex JPSS Ground System in Pieces Using DoDAF 2.0 as Implemented with UPDM," Proceedings of the AIAA Space Conference & Exposition, Sept. 11-13, 2012, Pasadena, CA, USA, paper: AIAA2012-5256, DOI: 10.2514/6.2012-5256
 


The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: "Observation of the Earth and Its Environment: Survey of Missions and Sensors" (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (herb.kramer@gmx.net).

Spacecraft   Development Status   Launch   Sensor Complement   Ground Segment   References   Back to Top

 


Minimize Useful Links
eoPortal News Missions Directory Earth Observation Images Earth Observation Events Earth Observation Jobs about eoportal Contact eoPortal Follow us on Twitter
Minimize Follow us on Twitter